
CS312 Spring 2023 – Midterm 2 Solution

Name:

Date: Start time: End time:

Honor Code:

Signature:

This exam is open course web page, open Ed, open notes, open slides, open your assignment solutions
and open calculator, but closed everything else (e.g., consulting with others and searching online are not
permitted). You have 3 hours in a single sitting to complete the exam. Read the problem descriptions
carefully and write your answers clearly and legibly in the space provided. Circle or otherwise indicate your
answer if it might not be easily identified. You may use extra sheets of paper, stapled to your exam, if you
need more room, as long as the problem number is clearly labeled and your name is on the paper. If you
attached extra sheets indicate on your main exam paper to look for the extra sheets for that problem.

Learning Target Assessment

1

2

3

4

5

6

7

8

1

Page 2 of 9

Question 1. User stories
You are developing a web application for managing the queue for in-person office hours appointments.
When interviewing stakeholders, multiple respondents described e-mail notifications for individuals as
they approached the front of the queue. Write two I.N.V.E.S.T. user stories for this feature, one from
the perspective of a student in the queue for office hours, the other from the perspective of an instructor
holding office hours. Your user stories will be evaluated on format and quality.

(a) Student:

Solution:

As a student,
I want receive a notification when I am approaching the front of the queue
So that I don’t need to wait outside the office but instead can walk over when my turn ap-
proaches.

(b) Instructor:

Solution:

As an instructor,
I want waiting students to automatically receive notifications as they approach the front of the
queue
So that students don’t need to wait outside the office, but are ready for their turn.

Page 3 of 9

Question 2. Javascript
Assume wait(sec) returns a promise that resolves after sec seconds have elapsed:

1 function first () {

2 return wait (3).then (() => console.log(1));

3 }

4
5 function second () {

6 return wait (2).then (() => console.log(2));

7 }

8
9 function third () {

10 return wait (1).then (() => console.log(3));

11 }

(a) What will the following code print?

first();

second();

third();

Solution:

3

2

1

(b) Using only the three functions above and either the Promise API, e.g., then methods, or await,
write code that prints 1, 2, 3 in that order. You must use the 3 functions above without modification.
No additional console.log statements or other code that isn’t then with a callback or await is
allowed.

Solution:

Solutions using Promise API and await:
first()

.then(() => second())

.then(() => third());

await first();

await second();

await third();

Page 4 of 9

Question 3. Testing
Imagine you are developing a reminder application, where each reminder object has a description string
and dueDate date. You have implemented a component, ReminderCreator, containing input elements
and a “Create” button to create new reminders. When the user clicks “Create”, the component invokes
a callback with the reminder object. If the user doesn’t provide an item description or enters a date in
the past, the “Create” button is disable and the form provides error feedback. Using the skeleton below,
implement pseudo-code for F.I.R.S.T. integration tests to verify that creating a valid reminder invokes
the callback, and that a reminder with a past date disables the “Create” button and results in error
feedback. We measure error feedback as the date input element having the attribute "aria-invalid"

set to "true". You do not need to provide executable Javascript, instead describe the steps of your test
as pseudo-code. For example, one of the steps in your answer might be:

Assert date input element has attribute ”aria-invalid” with value ”true”

describe("Reminder creation", () => {

test("Creating valid item invokes callback", () => {

Solution:

Create mock function for callback

Render ReminderCreator passing mock as the callback

Find and fill the item text with "Test item" and set the date to Date.now() + 1 day

Find the "Create" button and simulate a click

Assert mock callback called with object containing "Test item" and a due date of Date.now() + 1 day

});

test("Past date shows error feedback", () => {

Solution:

Create mock function for callback

Render ReminderCreator passing mock as the callback

Find and fill the item text with "Test item" and set the date to Date.now() - 1 day

Find the "Create" button and assert it is disabled

Find and assert date element has attribute "aria-invalid" with value "true"

Assert mock callback was not called

});

});

Page 5 of 9

Question 4. Scenarios
Imagine you are writing a React component to display a list of products in an e-commerce store. Your
component has a dropdown to display the items sorted in ascending order of cost (low to high) or
descending order of cost (high to low). Write a Gherkin-style test scenario that covers this behavior.
You do not need to provide the implementation details of the tests, just describe the scenario for the
test.

Solution:

We want to make sure to the test toggles between the two orders, and back again.

Given the is a list of two products, $10 t-shirt and $15 pants,

and the display order is ascending,

Then the products should be displayed as $10 t-shirt, then $15 pants

When I select descending order

Then the products should be displayed as $15 pants, then $10 t-shirt

When I select descending order

Then the products should be displayed as $10 t-shirt, then $15 pants

Question 5. React
You are implementing an application for displaying statistics about date ranges in React. Outline and
label the wireframe (below, left) with a possible set of components. Label the tree (below, right) with
components to show the hierarchy, including labeling the tree nodes with state implemented in that
component and labeling the tree edges with props passed to each component (similar to the figure in
programming assignment 2). The top-level component DateCalculator is labeled for you. Assume you
have a Javascript library that can compute statistics for arbitrary date ranges and that your component
library already provides a controlled calendar-based DatePicker component (like shown in the wire-
frame). Any implementation reflecting good React practices will be accepted. You may not need all
the nodes in the tree; cross out any unused nodes. Your component, state and prop names should be
sufficiently descriptive that their role is clear.

Solution:

Good design would hoist the date state to the DateCalculator component where it can be used by
the display (and set by the pickers).

DateCalculator

The range 5/18/2023-5/22/2023 is
0 months,
0 weeks,
5 days,
and spans 1 weekend(s).

5/18/2023 5/22/2023

DateDisplay

DatePicker DatePicker

DateCalculator

DatePicker DatePicker

startDate
setStartDate

endDate
setEndDate

startDate
endDate

✗

startDate
endDate

DateDisplay

Page 6 of 9

Question 6. REST
For each of the following pages in a NextJS-based web application, provide an appropriate RESTful
front-end (browser) URL for that page and, where relevant, an appropriate RESTful server API endpoint
(HTTP verb and URL) that component would interact with. An example is provided is below.

Page Page URL API HTTP verb and URL
Add a new article to Simplepedia /edit POST /api/articles

View a patron’s loaned (checked-
out) items in a library manage-
ment application

/patrons/1/loans GET /api/patrons/1/loans

Renew a patron’s loaned item to
extend the due date in a library
management application

/patrons/1/loans/1/renew PUT /api/patrons/1/loans/1

Search results for items in a li-
brary collection with “fire” in the
title

/items/search?title=“fire” GET /items/search?title=“fire”

Question 7. Data modeling
Assume you are developing an application for managing class rosters at an institution where students
take multiple classes and faculty members teach multiple classes, but each class is only taught by one
faculty member.

(a) Identify the models you would define in your server backend to implement the following user story:

As a faculty member, I want to be able to view my current class roster, so that I know who is enrolled
in my class

Solution: At a minimum we would want User (with an attribute for student/faculty) and
Course. Students would be linked with a Course via a join table. Answers with and without a
Model for the join table, or with separate Student and Faculty models were accepted.

(b) Choose ONE answer. In a normalized schema designed for a relational database (RDBMS), how
would you best store link between faculty members and the classes they teach?

⃝ An array of class IDs stored in a Faculty table row

⃝ An array Faculty IDs stored in the Class table row

⃝ A single Class ID stored in a Faculty table row√
A single Faculty ID stored in the Class table row

Solution: A class has one faculty member, but a faculty member has many classes. We put
the foreign key in the “many” side of the relation, i.e., in Class.

(c) How would your answer to the part above change if a single class could be taught by multiple faculty
members with different factions of responsibility (i.e., faculty member one is 75% responsible and
faculty member two is 25% responsible)? Describe the association that models the relationship
and note any attributes needed to support this feature. Your answer should use the association
vocabulary from class.

Solution: We would describe this as a many-to-many relationship, i.e., a Class has many
Faculty and a Faculty teaches many Classes. We would implement this relationship with a

Page 7 of 9

join table, e.g., Teaches, that include the class and faculty IDs, and also the relative responsi-
bility as an attribute.

Page 8 of 9

Question 8. Development processes
For each of the following series of commands, indicate whether it is consistent with our in-class develop-
ment and deployment processes or not. If not, briefly explain why those actions would be problematic.

git checkout -b edit_article

...

git add .

git commit -m "New page ..."

git push origin edit_article

√
Consistent with class practices

⃝ Not consistent with class practices

git checkout main

...

git add .

git commit -m "New page ..."

git push origin main

⃝ Consistent with class practices

√
Not consistent with class practices

Solution: We don’t directly push new features to
main, instead we create a feature branch that is
merged in via pull request.

git checkout -b edit_article

...

git add .

--no-verify bypasses pre-commit hooks

git commit --no-verify -m "New page ..."

⃝ Consistent with class practices

√
Not consistent with class practices

Solution: We don’t want to bypass formatting
and linting checks in pre-commit hooks as that
can let errors slip through or result in consistent
formatting.

git checkout -b edit_article

...

git add .

git commit -m "New page ..."

git fetch

git merge origin/main

git push origin edit_article

√
Consistent with class practices

⃝ Not consistent with class practices

Page 9 of 9

Page intentionally blank.

