
CS312 Spring 2025 – Midterm Solution

Name:

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed computer, course web page, notes, texts, searching online, AI and consulting with others,
i.e., closed everything except a notes page you prepare. You are only permitted one double-sided letter-sized
sheet of notes of your own creation (may be typed). You have 2 hours in a single sitting to complete
the exam. Read the problem descriptions carefully and write your answers clearly and legibly in the space
provided. Circle or otherwise indicate your answer if it might not be easily identified. You may use extra
sheets of paper, stapled to your exam, if you need more room, as long as the problem number is clearly
labeled and your name is on the paper. If you attached extra sheets indicate on your main exam paper to
look for the extra sheets for that problem.

Learning Target Assessment

1

2

3

4

5

6

7

8

1

Page 2 of 11

Question 1. User stories
You are developing a web application for organizing public events. When interviewing stakeholders,
multiple respondents described wanting a calendar view that summarizes the number of events on each
day of date range. Write two I.N.V.E.S.T. user stories for this feature, one from the perspective of
an event planner, the other from the perspective of a potential event goer. Your user stories will be
evaluated on format and quality.

(a) Event planner:

Solution:

As an event planner,
I want to view a calendar with a visual summary of scheduled events in a selected date range
So that I can quickly identify dates for my event that aren’t to busy.

(b) Potential event goer:

Solution:

As a potential event goer,
I want to view a calendar with a visual summary of scheduled events in a selected date range
So that I can quickly identify when interesting events may be happening.

Page 3 of 11

Question 2. Javascript
Assume the function wait(sec) returns a promise that resolves after sec seconds have elapsed. Assume
that every other operation is instantaneous (e.g., takes 0 milliseconds). Remember that Date.now()
returns the number milliseconds elapsed since 12:00AM January 1, 1970, UTC.

1 function do(time , since) {
2 return wait(time).then (() => {
3 console.log(Date.now() - since);
4 });
5 }
6
7 const start = Date.now();
8 do(2, start);
9 do(1, start).then (() => {

10 do(4, start);
11 });
12 do(3, start);
13 console.log("end");

1 async function do(time , since) {
2 await wait(time);
3 console.log(Date.now() - since);
4 }
5
6 const start = Date.now();
7 do(2, start);
8 do(1, start);
9 do(4, start);

10 await do(3, start);
11 console.log("end");

Consider the two code snippets above. Write the expected output for left-side code below on the left.
If the right-side code produces the same result indicate below, otherwise provide the expected output
below on the right.

⃝ Both snippets produce the same output

Solution:

end
1000
2000
3000
5000

Solution:

1000
2000
3000
end
4000

Page 4 of 11

Question 3. Testing
You are developing a React component named WordGame for playing a word guessing game. The compo-
nent takes the hidden word as a prop. The component provides a text input where the user can enter
their guess and button “Guess” to check their guess. Incorrect guesses are displayed in a list below the
input with an × appended. A correct guess is displayed at the end of the list with a ✓ appended. When
the user guesses correctly the component displays the time elapsed since the game started (the compo-
nent was mounted), e.g.,“You guessed in 5.2s!”. Using the skeleton below, implement pseudo-code for
a F.I.R.S.T. unit test to verify that game correctly handles a correct guess after one incorrect guess. You
do not need to provide executable Javascript, instead describe the steps of your test as pseudo-code.
For example, one of the steps in your pseudo-code might be:

Assert mock function was not called

You may or may not need all of the functions below. You only need to include pseudo-code in bodies of
the functions relevant to your answer.

describe("Word game", () => {
beforeEach(() => {

Solution:

Set mock system time to 1000

});
afterEach(() => {

Solution:

Clear the mocks

});
test("Shows correct end of game after one incorrect guess", () => {

Solution:

Render the WordGame component with prop "HiddenWord"

Find the guesses list and assert it is empty

Find text input and enter "input1"
Find and click the "Guess" button
Find the guesses list and assert it is [" input1×"]

Advance mock time 3s

Find text input and enter "HiddenWord"
Find and click the "Guess" button
Find the guesses list and assert it is [" input1×", "HiddenWord✓"]

Find and assert the presence of "You guessed in 3s!" message

Page 5 of 11

A satisfactory test will mock or otherwise meaningfully control or measure time, perform one in-
correct guess (entering guess text and clicking the “Guess” button), asserting on the content of
the “guess” list after the guess, and then perform a correct guess, asserting on the contents of the
“guess” list and presence of the correct “You guessed message ...” with the time. Tests that include
mocks need to clear the mocks. Tests that don’t control time need a way to consistently measure
and assert the elapsed time.

});
});

Page 6 of 11

Question 4. Scenarios
On your application’s login page the user can toggle the password visibility, i.e. switch between masked
characters and plain text, by clicking on an icon in the password field. When the password is hidden, a
“Show password” icon appears, when it is in plain text a “Hide password” icon appears. Write a Gherkin-
style test scenario for changing the password visibility. You do not need to provide the implementation
details of the tests, just describe the scenario for the test.

Solution:

Given the user is on the login page
And has entered the username and password "user1" and "password1"
And the password is shown as len("password1") masked characters
And the "Show password icon is displayed
When the user clicks the "Show password" icon
Then the password should be shown as the plain text "password1"
And the "Hide password" icon is displayed
When the user clicks the "Hide password" icon
Then the password should be shown as len("password1") masked characters

Page 7 of 11

Question 5. React
You are implementing the Checkout component shown below with React. It receives a numeric prop
representing the total purchase. Entering an amount paid (tendered) by the customer in cash computes
the necessary amount of change and how the change should be provided, i.e., the number of bills and
coins of the denominations shown. Outline and label the wireframe (below, top) with a possible set of
components. Label the tree (below, bottom) with components to show the hierarchy. Label the tree
nodes with state implemented in that component and label the tree edges with props passed to each
component (similar to the figure in programming assignment 2). Repeated components can be labeled
once in the tree. The top-level component and its prop(s) are labeled for you. Any implementation
reflecting good React practices will be accepted. You may not need all the nodes in the tree or may need
to add nodes depending on your design; cross out any unused nodes. Your component, state and prop
names should be sufficiently descriptive that their role is clear.

Solution:

Checkout

20.00

Total ($): 15.43

Tendered ($):

Change ($): 4.57

20

10

5

1

25

10

5

1

0

0

0

4

2

0

1

2
Bill
Change

Coin
Change

Transaction
Summary

Checkout
total

BillChange CoinChange

tendered

changechange

Transaction
Summary

total
tendered
setTendered
change

An explanation is not required for full credit, but is provided here for clarity. Any solution consistent
with React best practices was accepted, here is one approach. There is a single piece of state,
tendered stored in the parent component Checkout. The amount of change and the number of
each denomination can be derived from total prop and the tendered state and so should not be
represented as their own state (to maintain a single source of truth). That tendered amount is
set from within TransactionSummary which needs the total, amount tendered, compute change and
a callback to update the tendered amount as props. We use two components for bill change and
coin change responsible for computing the number of each denomination from change. Although
not necessary and not shown here for simplicity, the change entries (denomination and number) are
good candidates for another component to encapsulate the repetitive elements.

Page 8 of 11

Question 6. REST
For each of the following pages in a NextJS-based event management application, provide an appropriate
RESTful front-end (browser) URL for that page and, where relevant, an appropriate RESTful server
API endpoint (HTTP verb and URL) that component would interact with. An example is provided
below.

Page Page URL API HTTP verb and URL
View all articles on Simple-
pedia

/articles GET /api/articles

Search for events near a zip-
code

/events/search?zip=05753 GET /api/events?zip=05753

Update an event details /events/5/edit PUT /api/events/5

Add a comment to an event /events/5/comments/new POST /api/events/5/comments

Page 9 of 11

Question 7. Data modeling
You are developing a web application for organizing public events through which people can find and
register to attend events. You will be using a relational database to store the data for this application.

(a) Identify the minimum set of models you would define in your server backend to implement the
following user story:

As a past attendee, I want to review events that I have registered for and attended, so that I can provide
feedback to the event organizers and information to future potential attendees.

Solution: The minimum models would be User and Event connected via two different join
tables and models: Registration to store registration/attendance and Review to store the
reviews. Answers that did not specify the join tables as separate models, but indicated the role
for the join tables and the data they stored were accepted.

(b) Which of the following best describe the relations between the following pairs of entities. Select one
answer for each pair, then briefly explain your answers.

User and Event
⃝ One-to-One

⃝ One-to-Many

√
Many-to-Many

⃝ No relation

Event and Review
⃝ One-to-One

√
One-to-Many

⃝ Many-to-Many

⃝ No relation

Solution: A user can register for many events and event can have many registered users, so the
relationship between User and Event is many-to-many. User and Event also a have a many-to-
many relationship between via Review. Since an event can have many reviews, but each review
is associated with a single event, the relationship between Event and Review is one-to-many.

(c) In a normalized schema designed for a relational database (RDBMS), what schema would be needed
to implement the user story in part (a)? You do not need to provide SQL, just the attributes, their
types, the primary key, and any foreign key constraints needed to implement the user story. You
only need to provide the schema relevant to the user story, not the entire schema for the application.

Solution: A minimal solution is shown below:

User

intid (pk)

Event

intid (pk)

Registration

int
(pk)

userId

inteventId

boolattended

Review

int
(pk)

userId

inteventId

textreview

Foreign key
constraints shown
with arrows

Since a user can only register for an event or review an event once, we can use a composite of
the userId and eventId as the primary key for the Registration and Review tables. Solutions

Page 10 of 11

that also used separate incrementing primary keys for those tables were accepted.

Page 11 of 11

Question 8. Development processes
For each of the following, indicate whether the action would be consistent with the best practices for
software development as described in class or not consistent. Here “consistent” is defined as consistent
with good development practices generally, not that it was required as part of our class. Briefly explain
each answer.

(a) Keep a technically complex feature as a single user story to ensure continuity during its development,
especially across sprints.

⃝ Consistent
√

Not consistent

Solution: Complex features should be decomposed into smaller, valuable increments (i.e., the
“S” and “V” in INVEST) that can be completed within a single sprint, even if the full feature
requires multiple stories. We can use “epics” to link related user stories.

(b) Regularly rebase the main branch to simplify and linearize the project’s commit history.

⃝ Consistent
√

Not consistent

Solution: Rebase or other similar techniques rewrite history, which can cause problems for
other developers working from shared history. Once branches are shared, their commit history
should not be modified. Rebasing to simplify and linearize the commit history is appropriate
for private branches, but not for shared branches like main.

(c) Configure your Continuous Integration (CI) test pipeline to treat any warnings as errors, i.e., the
CI pipeline fails if any warnings are generated.
√

Consistent ⃝ Not consistent

Solution: We want to immediately address any actual warnings or disable false-positive warn-
ings. Ignoring warnings can lead to missed problems in the future. Treating all warnings as
errors is a good practice to ensure that we address all warnings.

