
In the beginning, I suspect this was new to many of you… But we have now
implemented this kind of interactivity and much more. In fact,…

1

In the beginning…
<div class="blue-slider">
 <div class="color-label">blue: </div>
 <input type="range" id="slider-b" …/>

</div>

// Set oninput callback for each slider
sliders.forEach((slider) =>
 slider.addEventListener("input", update));

const update = function() {
 colorBox.style.background =
 `rgb(${sliders[0].value}, ${sliders[1].value}, ${sliders[2].value})`;
 sliders.forEach((slider, index) =>
 labels[index].innerHTML = slider.value);
};

Over the semester, we have learned about, used and often implemented components
in every one of these boxes, from the JavaScript running on the front-end (i.e., the
client) to the route handlers on the server, the database schema and more…

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

2

Client
(e.g. browser)

Internet Site

Web Server
(e.g., Apache,

NGinx)

App. Server
(e.g., NodeJS)

Database
(e.g., SQLite,
PostgreSQL)

Routing &
Controllers
(e.g., NextJS)

Models
(e.g., knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

Along the way we have gained familiarity with JavaScript (perhaps a new language)
and its emphasis on closures and callbacks. The idea of functions as values (functions
as 1st class objects), and asynchronous execution hopefully now feels familiar.

3

Callbacks and more callbacks!

const wrapValue = (n) => { // function(n) {
 let local = n;
 return () => local; // function () { return local; }
}

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);
console.log(wrap1()); // What will print here?
console.log(wrap2()); // What will print here?

// () => 1
// () => 2

Recall: Assume the function wait(sec) returns a promise that resolves after sec
seconds have elapsed. Assume that every other operation is instantaneous (e.g.,
takes 0 milliseconds). Remember that Date.now() returns the number milliseconds
elapsed since 12:00AM January 1, 1970, UTC.

Left (each on their own line): end 1000 2000 3000 5000
Right (each on their own line): 1000 2000 3000 end 4000

The key idea is to think about what sequencing relationships are introduced. Both
then and wait introduce a "before than" relationship, i.e., some code only executes
when a promise resolves. On the left-had side the do before relationship occurs
between do(1) and do(4), on the right-hand side it is between do(3) and
console.log(“end”).

4

Asynchronous execution in action
function do(time, since) {
 return wait(time).then(() => {
 console.log(Date.now() - since);
 });
}

const start = Date.now();
do(2, start);
do(1, start).then(() => {
 do(4, start);
});
do(3, start);
console.log("end");

async function do(time, since) {
 await wait(time);
 console.log(Date.now() - since);
}

const start = Date.now();
do(2, start);
do(1, start);
do(4, start);
await do(3, start);
console.log("end");

We have made extensive use of React, and some its key principles:
• Maintain a single source of truth
• Props "flow" down
• Callbacks "flow" up

React implements a design pattern for highly interactive UIs. Your responsibility as
the programmer is to define what you want rendered on the screen for a given state
of the application and how you want to update that state in response to user actions.
React fills in the "last piece" of the cycle by efficiently re-rendering the UI as the state
changes.

5

function ColorPicker() {
 const [red, setRed] = useState(0);
 const [green, setGreen] = useState(0);
 const [blue, setBlue] = useState(0);

 const color = {
 background: `rgb(${red}, ${green}, ${blue})`
 };
 return (
 <div>
 <div className="color-swatch" style={color} />
 <LabeledSlider label="Red" value={red} setValue={value => setRed(value)} />
 <LabeledSlider label="Green" value={green} setValue={value => setGreen(value)} />
 <LabeledSlider label="Blue" value={blue} setValue={value => setBlue(value)} />
 </div>
);
}

Props down! Callbacks up!

Single source of truth!

You are implementing the Checkout component shown below with React. It receives
a numeric prop representing the total purchase. Entering an amount paid (tendered)
by the customer in cash computes the necessary amount of change and how the
change should be provided, i.e., the number of bills and coins of the denominations
shown. Outline and label the wireframe (below, top) with a possible set of
components. Label the tree (below, bottom) with components to show the hierarchy.
Label the tree nodes with state implemented in that component and label the tree
edges with props passed to each component (similar to the figure in programming
assignment 2). Repeated components can be labeled once in the tree. The top-level
component and its prop(s) are labeled for you. Any implementation reflecting good
React practices will be accepted. You may not need all the nodes in the tree or may
need to add nodes depending on your design; cross out any unused nodes. Your
component, state and prop names should be sufficiently descriptive that their role is
clear..

Recall our design process:
• Identify components, with particular attention to repetition
• Identify the minimum state needed for the application. In this cases, we only need

the tendered amount. Why don't so we need change? Because it can be derived
from the total and the amount tendered.

• Where does that state live? Nearest common ancestor of the components that
need the information, i.e., Checkout.

6

• Data flows down as props, information flows up as callbacks. Tendered flows down
as a prop to the controlled input in the form, a callback “flows” that information
back up.

6

We learned about writing backend servers using Javascript to create RESTful APIs.
RESTful APIs are built around the idea of actions on resources, i.e., the film resource
in the film explorer example. The routes are typically implemented as queries to our
persistence layer, in this example to a RDBMS via the Objection.js ORM. This
particular query is using the "one-to-many" relation defined on the Film Objection.js
model to automatically fetch the Genres associated with each of the films.

7

Route Controller Action
POST /api/films Create new movie from request data
GET /api/films/:id Read data of movie with id == :id
PUT /api/films/:id Update movie with id == :id from request data
DELETE /api/films/:id Delete movie with id == :id
GET /api/films List (read) all movies

router.get(async (req, res) => {
 const films = Film.query().withGraphFetched('genres');
 res.status(200).send(films);
});

We learned about different approaches to data persistence on the backend with a
focus on relational databases, e.g., SQLite and PostgeSQL.

8

Relational (RDBMS) Non-Relational
Data Table-oriented Document-oriented, key-

value, graph-based, column-
oriented, …

Schema Fixed schema Dynamic schema
Joins Used extensively Used infrequently
Interface SQL Custom query language
Transactions ACID CAP

SELECT * FROM people
WHERE age > 25;

db.people.find(
 { age: { $gt: 25 } }
)

We learned about (but maybe didn’t always practice…) test driven development
(TDD) and concepts like unit testing and integration testing. We also talked about the
use of behavior driven development (BDD) to move us from user story to scenario to
test to implementation.

9

Google testing blog

Sp
ee

d

Kent C Dodds “Write tests. Not too many.
Mostly integration.”

Co
m

pl
ex

ity

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c
https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c

You are developing a React component named WordGame for playing a word
guessing game. The component takes the hidden word as a prop. The component
provides a text input where the user can enter their guess and button “Guess” to
check their guess. Incorrect guesses are displayed in a list below the input with an ×
appended. A correct guess is displayed at the end of the list with a ✓ appended.
When the user guesses correctly the component displays the time elapsed since the
game started (the component was mounted), e.g.,“You guessed in 5.2s!”. Using the
skeleton below, implement pseudo-code for a F.I.R.S.T. unit test to verify that game
correctly handles a correct guess after one incorrect guess. You do not need to
provide executable Javascript, instead describe the steps of your test as pseudo-code.

A first step is to think about what you need to test:
• A satisfactory tests would assert an incorrect guess showed the expected result

(guess with X) and then a correct guess showed the guess with a ✓ and the
elapsed time.

Next, what ways do you need to isolate the component under test from the outside
world (Independent and Repeatable in FIRST). This is where you will create mocks.
Two common situations are mocking any callbacks that the React components expect
as props and mocking interfaces to the outside world (e.g., network requests or
time). Setting values for value props, form fields, etc. are not mocks. Instead, mocks
are used to intercept or monitor interactions with other code/systems. We use mocks

10

describe("Word game", () => {
 beforeEach(() => {

 });
 afterEach(() => {

 });
 test("Shows correct end of game after one incorrect guess", () => {

 });
});

to set known response values, etc.
• The design does not imply that this component expects a callback as a prop,

instead as indicated, it is provided the secret word as a prop
• But it does rely on time and so we need some way to measure or control time.

The most robust approach would be to control time by mocking Date (or more
specifically using Jest’s functions for setting and advancing time). We also need
to clear any mocks to ensure repeatable tests.

Our test typically involves:
• Rendering the component with the relevant props, mock functions, etc. (Arrange)
• Finding and setting any inputs, e.g., guess input. (Act)
• Find and clicking any buttons, e.g., Guess button (Act)
• Make assertions about the UI, mocks. Here we want to assert the result is

displayed with the expected following character. (Assert)
And we want to do that for an incorrect guess and then a correct guess, also asserting
on the correct time after the correct guess.

Render the WordGame component with prop "HiddenWord"

Find the guesses list and assert it is empty

Find text input and enter "input1"
Find and click the "Guess" button
Find the guesses list and assert it is ["input1\times"]

Advance mock time 3s

Find text input and enter "HiddenWord"
Find and click the "Guess" button
Find the guesses list and assert it is ["input1\times", "HiddenWord\checkmark"]

Find and assert the presence of "You guessed in 3s!" message

10

We learned about using git to manage development, and the value of continuous
integration (CI). CI rigorously tests (we hope) every integration in production-like
environment, the motivation is to:
• Prevent development-production mismatch
• Test multiple browsers, etc.
• “Stress test” code for performance, fault-tolerance, etc.
CI is part of a larger DevOps approach.

Recall the DevOps principles:
• Involve operations in each phase of a system’s design and development,
• Heavy reliance on automation versus human effort,
• The application of engineering practices and tools to operations tasks

This manifested for us in our use of GitHub actions to test our builds, and automated
preparation (e.g. running migrations/seeding) and ultimately deployment with
csci312.dev.

https://www.atlassian.com/git/tutorials/using-branches

11

Main is always “deployable”
• Tests pass
• No incomplete features

Short-lived branch for
single feature

main

git checkout –b feature

feature

git checkout main
git merge feature

git commit –m "…"
...

Make sure
tests pass

You also learned about ways to approach design from user stories to CRC cards to lo-fi
prototypes. Our goal is to be able to iterate on our design quickly and cheaply. These
”lo-tech” tools are intended to facilitate conversations with our stakeholders, e.g.,
customers.

12

(Figure 4.4, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

Film
Responsibility Collaborator
Knows its title
Knows its plot overview

…
Know which genres it is Genre

Agile development processes, Scrum in particular, played an important role for us. In
Scrum the short sprints provide frequent opportunities to update our approach in
response to what we have learned about the problem or the application. Recall the
key idea of lower-case "a" agility:
1. Find out where you are,
2. Take a small step towards your goal,
3. Adjust your understanding based on what you learned, and
4. Repeat
And when faced with two or more alternatives that deliver roughly the same value,
choose the path that makes future change easier

Adapted from Mountain Goat Software
https://www.mountaingoatsoftware.com/uploads/presentations/Getting-Agile-With-
Scrum-Norwegian-Developers-Conference-2014.pdf

Adapted from Dave Thomas (https://www.youtube.com/watch?v=a-BOSpxYJ9M)

13

“Scrum-ish” (in a nutshell)

Feature
Feature

Feature

Feature

Product Backlog

Sprint Goal
Feature

Feature

”Deployable”
product
increment

Sprint (2-4 weeks)Sprint
Backlog

24 hours between
”standup” meetings

Sprint Planning

Sprint Demo &
Retrospective

Frequent feedback!

https://www.youtube.com/watch?v=a-BOSpxYJ9M

And we thought about how to approach building our own "Mona Lisa"s. Recall that
an incremental approach calls for building a fully formed idea a bit at time, and thus
requires having a fully formed idea. In contrast, iterating allows you to move from
vague idea to realization. The catch is we have to address the entire scope at one
time, i.e., we are working on the entire image (a tricky and risky approach). Thus, we
sought the of the best of both where in each sprint we both add new features
(incremental) and refine existing functionality (iterative) with strong focus the highest
priority features (the "face").

14

Iterative Incremental

http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa

Along the way, you have completed four assignments and 10 practical exercises
yielding a Wikipedia-like platform with database persistence and user authentication.
And took a midterm with 8 learning targets and reviewed 443+ slides!

Between the assignments, practical and the project, you/we have created 491
repositories in our GitHub organization. On the just the main branches of your
projects (as of yesterday) you have made 736 commits (and I suspect there are many
more in total) and many, many, branches (I didn’t even want to try to count!)

328+159+48+118+83

15

And the 30+ different acronyms… I hope these (and especially those on the left) will
help you remember the keys ideas when writing a test, or a user story or debugging.

The one I struggle with always is RASP. Read the error message, Ask a colleague an
informed question, Search using a keyword, Post on Stack Overflow, etc.
Recall ACID is set of properties for database transaction: Atomicity, Consistency,
Isolation, and Durability

16

SMALL (So Many Acronyms Littering
the Lectures)

• F.I.R.S.T.
• I.N.V.E.S.T.
• R.A.S.P.
• DRY
• SoC
• SOFA
• SOLID
• SaaS
• TDD, BDD
• MVC
• WISBNWIW
• ACID
• CRUD(L)

• HTML / DOM / CSS / JSX
• CI / CD
• UI
• AJAX
• REST API
• URI / URL
• TCP/IP
• JSON
• CRC
• ORM
• POJO
• SQL / RDBMS
• VCS
• SLO / SLA

I suspect these ”anti-patterns” resonate now as we are in the thick of the project and
than they did before!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

17

Commandments for being a bad SW team player
(and some alternatives)

1. Those fails don’t matter
2. My branches, my sanctuary
3. It’s just a simple change
4. I am a special snowflake
5. Cleverness is impressive
6. Just change it quickly on the

production server
7. Time spent looking stuff up

is wasted time (not coding)
8. “Green fever”: Catch it!
9. Weeks of coding can save

hours of planning & thought
10. When blocked, I am stuck

1. Never push failing tests
2. Have short-lived branches by

integrating frequently
3. Test everything
4. One coding style
5. Transparency is humble
6. Make every change

automatable
7. Spend 5 minutes searching

for less or better code
8. More tests ≠ higher quality
9. Work through your design
10. I unblock myself, or move on

to the next task

18

Take-aways
• Behind every design decision there should be a user

story (a stakeholder and a motivation!)
• Testing, not just a class requirement, it’s a good idea
• Develop iteratively and incrementally
• There should be one source of truth
• Don’t repeat yourself
• Don’t mutate props or state
• Do really read error messages (and the docs!)
• Automate all the things
• Don’t break the “Build”
• Program strategically, not tactically

Write beautiful code, do the Right Thing, give your Statue of Liberty hair!

go/crf
go/cshelp-evals

19

earthcam.com

