
A pattern is not a specific class or library, instead it is a template for designing a 
specific class or library. Over time as a SW developer, you will build up a repository of 
such patterns, helping you develop high-quality SW much more quickly (since you are 
not “starting from scratch”). You have already used many design patterns, at different 
scales, including the three-tier architecture pattern, model-view-controller (MVC) 
patterns, React’s virtual-DOM based rendering approach and more. Today we will talk 
more about designs patterns and some other general design principles to keep in 
mind, especially when working with statically typed languages.

1

Recall: Design Patterns
“A pattern describes a problem that occurs often, 
along with a tried solution to the problem” - 
Christopher Alexander, 1977

A Design Pattern describes parts of 
a problem/solution that are the 
same every time
Design Pattern ≠

Specific classes or libraries
Full design

Design Pattern = template



A well-known example of design patterns comes from this very influential book on 
writing object-oriented software. The book describes a variety of techniques for 
dealing with common issues that come up in object-oriented design, although I 
should say these are most relevant to OO software in statically typed languages. So, 
dust off your Java hat as you think about this next bit…

An example would be the factory method, where you create a static method for 
creating and initializing new objects instead of a constructor. This allows you to swap 
in different subclasses depending on need, i.e., depending on the arguments. The 
caller does not need to know which sub-class should be created in any given context, 
that is the responsibility of the factory. 

2

• Creational
Ways to create objects

• Structural
Ways to combine/compose objects

• Behavioral
Ways to communicate between objects

Design patterns in other contexts: The 
“gang of four”



Imagine you are writing a class to work with both un-compressed and compressed 
files. We want to use the same interface in both contexts, that is the code that 
consumes the files shouldn’t care whether the file is compressed or not. We can 
imagine creating a hierarchy with the AbstractFileReader as the base, with 
CompressedFileReader and UncompressedFileReader as the derived classes. 
AbstractFileReader defines the common interface, which is implemented by both 
derived classes (e.g., `read(nbytes)`).

But we will still need to instantiate the correct class. That means some code that uses 
AbstractFileReader will need to know there is a difference between uncompressed 
and compress files, e.g., between slides.pdf and slides.pdf.zip. But our goal is that 
users of these classes don’t need to know about that distinction. With *FileReader, 
we define a factory function that returns a reference/pointer to a AbstractFileReader. 
Internally is instantiates the correct derived class, e.g., by looking at the file name. 
e.g., the function would look like `AbstractFileReader make_reader(string filename)`. 
Now users of this library don’t need to know about this mapping. They provide a 
filename and get back the correct reader.

3

Example: I want to implement the same reader 
interface for compressed and uncompressed 
files so downstream consumers can work with 
either.

UnCompressedFileReader
read(bytes)

CompressedFileReader
read(bytes)

AbstractFileReader
read(bytes)

makeReader(filename)



SOLID provide a set of guidelines for defining classes in object-oriented 
programming (OOP) (and our code more generally). Unlike design patterns, 
SOLID is not a solution to a class of problems but instead a set of “cross-
cutting” principles that inform how we write classes.

4

SOLID* OOP principles (CS312 version)

Motivation: minimize cost of change 
• Single Responsibility principle
• Open/Closed principle
• Liskov substitution principle
• Injection of dependencies 

Traditionally, Interface Segregation principle

• Demeter principle
Traditionally, Dependency Inversion

*Robert C. Martin



Change is not data changing, but requirements changing. “If you can think of more 
than one motive for changing a class, then that class has more than one 
responsibility.” –Agile Software Development

Part of the craft of OO design is defining responsibilities and then sticking to them. 
This is a situation where the CRC cards can be helpful. We use that lo-fi approach to 
work out the responsibilities before writing any code.

In our example, we are caught between a rock and hard place (a common problem)… 
for efficiency we want to maintain this information in a single table, but the resulting 
model is overly complex. How can we handle such a situation?

5

Single Responsibility Principle (SRP)

• A class should have one and only one reason 
to change
Each responsibility is a possible axis of change
Coupled changes are fragile

• What is a Classes’ responsibility in ≤25 words? 
• Example of many responsibilities: User model

A user is a moviegoer, and an authentication 
principal, and a social network member, etc.



Our solution is to have one table (for efficiency) but multiple responsibilities (Identity 
and address). We can use techniques for creating cliques of methods for each 
responsibility, i.e., having an id and having and address, to decouple those 
responsibilities for each other. The address clique would have methods like isValidZip, 
etc. relevant to addresses, while the identity clique would have methods like isVip, 
relevant to identity. Here are some examples of how we could do that in JavaScript. 
Notice that Customer has all the designed capabilities, but we have implemented 
those distinct responsibilities separately so that they can developed and tested in 
isolation and reused in other settings.

6

Example: Extract classes in Model

Customer
name, name=
email, email=
street, street=
zip, zip=

const addrMix = Base => class extends Base {
  isValidZip() { … }
}
const idMix = Base => class extends Base {
  isVIP() { … }
}
class Customer extends addrMix(idMix(Model)) {
  …
}

class Customer extends Model {
  get address() { return new Address(this); }
}
class Address {
  isValidZip() { … }
  get zip() { return this.customer.zip(); } 
  …
}

Mixins

Composition & Delegation

Big class with 2+ 
responsibilities



What is our intuition for the relationship between the complexity of the interface and 
the complexity of implementation? We want code that is “deep”, i.e., the interface 
should be simpler than the implementation. But keep in mind "depth" isn't all we 
care about…

Answer: A

The interface remains the same, both are deep, that is the interface is simpler than 
the implementation. This makes sense if there is a separable subtask. Typically, such a 
subtask is a relatively general purpose and could be used elsewhere. Now each 
method has a different responsibility, and the parent does not need to know the 
details of the child and vice versa.

B can work but is fraught. If callers need to invoke both new methods that is probably 
a sign that they shared a responsibility. If, however, if most callers invoke one or the 
other that is a sign that they have different responsibilities, and you have identified 
better abstractions. C is the least desirable as the caller now must deal with multiple 
methods, most of which are shallow, that is their interfaces and implementations are 
similarly complex. 

Length is not the key determiner. Instead, our goal is a that class (method/function) 
”should do one thing and do it completely.” We are aiming for simple interfaces so 

7

Which of the following ways of splitting method 
is most likely to result in good design?

A. B. C.

Ousterhout. A Philosophy of Software Design

Complexity of interface

Complexity of 
implementation



users don’t need to keep much in their head to use the code, and the code should be 
“deep”, i.e., the interface should be simpler than the implementation. If we satisfy 
those then length is not the issue.

Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition  Yaknyam Press. 
Kindle Edition. 

7



LCOM scores are are a measure of methods/variables. Many methods accessing 
different instance variables would have high LCOM score.

Doesn’t this create needless complexity? Possibly? “An axis of change is an axis of 
change only if the changes actually occur. It is not wise to apply the SRP, or any other 
principle for that matter, if there is no symptoms.” –Agile Software Development

Counter argument? The question we are  asking is ”better together or better apart?”, 
i.e., should two pieces of functionality be implemented in the same or different 
places. The goal for the latter is to reduce overall complexity and improve modularity. 
But without care we can increase complexity because we are now managing multiple 
components, in possibly disparate locations (symptom, flipping between files). So, 
when might pieces of code be better together? When they share information, if they 
are always used together, they overlap conceptually, or if it would be hard to 
understand one without looking at the other.

Length is not the key determiner. Instead, our goal is a that class (method/function) 
”should do one thing and do it completely.” We are aiming for simple interfaces so 
users don’t need to keep much in their head to use the code, and the code should be 
“deep”, i.e., the interface should be simpler than the implementation. If we satisfy 
those then length is not the issue.

8

Summary: Single Responsibility 
Principle

What: A class should have exactly one 
responsibility or reason to change
Symptoms:

High LCOM (lack of cohesion of methods)
Long class with “cliques” of methods

Resolution:
Extract class(es)



Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition  Yaknyam Press. 
Kindle Edition. 

8



Answer: A

Recall that SOFA method is Short, Does it do One thing, has Few arguments, and is at 
a consistent level of Abstraction. There isn't a direct connection between methods 
observing SOFA and a class observing SRP. A class with many highly "SOFA" methods 
could still violate the SRP.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license

9

Which of the following is true about a 
class' observance of the Single 
Responsibility Principle?

A. Low cohesion is a possible indicator of an 
opportunity to extract a class

B. If a class respects SRP, its methods probably 
respect SOFA

C. If a class’s methods respect SOFA, the class 
probably respects SRP



What is the issue here? How could we update to observe the OCP?
“Open for extension”: The behavior of the module can be extended, e.g., we 
can add additional report types
“Closed for modification”: Extending the behavior does not result in changes to 
the existing source code

10

Open/Closed Principle

Classes should be open for extension, but closed 
for source modification
class Report
  report() {
 if (this.format === "html") {
   new HtmlFormatter(this).report();
    } else if (this.format === "pdf") {
      new PdfFormatter(this).report();
    } …
  }
  …
}   

Can’t extend (add new report types) 
without changing class code!



In OOP, the primary mechanism for extension is creating abstract class (interfaces), 
e.g., a Reporter interface, and then use polymorphic dispatch. Here we use duck 
typing in lieu of interfaces and go one step further and use a form of reflection to 
translate strings into classes (and a registry). `Report.report` is now “closed” to 
modification for adding report types.

In some languages the registry would be unnecessary, as they have more reflection 
support (i.e., can obtain class by name).

11

Extend the report generator
const reporters = {
  html: HtmlFormatter,
  …
}
export function registerReporter(name, klass) { 
  reporters[name] = klass; 
}

export default class Report
  report() {
    new reporters[this.format].report();
  }
  …
}

Provide mechanism for adding 
reporters



12

OCP in React
“Cards” are UI surfaces to display content and actions on a single topic

https://mui.com/material-ui/react-card/
https://react.dev/learn/passing-props-to-a-component#passing-jsx-as-children

These are all <Card … >s. How can we be “open” to 
different content, but “closed” to modification, i.e., we 
don’t need to change the Card components? 

<Card … >
  <Avatar … />
</Card>

function Card({ children }) {
  return (
    <div className="card">
      {children}
    </div>
  );
}



For the first, maybe report type wasn’t the thing we wanted to change. It was 
something else, but we didn’t know that …

13

OCP in an agile workflow

• You can’t enable all types of changes without 
modification; you must choose and might be 
wrong

• Agile methodology can help expose important 
types of changes early

• Then you can try to enable those types of 
changes 



Template/strategy patterns use polymorphism to customize a common set of steps.

14

Summary: Open/Closed principle
• What: Extending functionality of a class shouldn’t 

require modifying existing code, just adding to it
• Symptoms:

Conditional statements based on class or other property that 
doesn’t change after assignment

• Resolution:
Abstract factory pattern combined with…
Template and strategy patterns (capture outline of 
algorithm’s steps, or of overall algorithm)
Decorator (add behaviors to a base class)
Children components in React



Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

15

Formalizing subtyping: Liskov 
Substitution Principle

Let ϕ(x) be a property provable about objects x 
of type T. Then ϕ(y) should be true for objects y 
of type S where S is a subtype of T.

Turing Award Winner
Barbara Liskov

TL;DR; A method that works on 
an instance of type T, should also 
work on any subtype of T



16

When a Square is not a Rectangle
class Rectangle {
  constructor(w, h) {
    this.w = w;
    this.h= h;
  }
  setWidth(w) { this.w = w; }
}

class Square extends Rectangle {
  constructor(side) {
    super(side, side);
  }
  setWidth(w) {
    this.w = w;
    this.h = h;
  } 
}

Assumption is that changing 
width doesn’t change height

✘



17

Summary: Liskov Substitution principle

• What: Instance of subtype of type T can always 
be safely substituted for a T

• Symptoms:
Refused bequest: No meaningful way to implement a 
behavior of your superclass in a subclass

• Resolutions:
Composition: Rather than inheriting from T, create class 
that has a T as a component
Explicitly delegate method calls on T to component 
(inheritance is effectively implicit delegation)



Answer: A

LSP isn't necessarily tied to inheritance or class-based typing and thus applies to both 
duck-typed and statically-typed languages. Any time polymorphism is used (in 
whatever form) the LSP is applicable. But as we saw in our square/rectangle example, 
successfully compiling does not ensure there are no LSP violations.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license and https://stefanroock.wordpress.com/2010/11/08/the-liskov-substitution-
principle-lsp-in-duck-typed-programming-languages/.

18

Which of the following two statements about the Liskov 
Substitution Principle (LSP) are true?
a) In duck-typed languages, LSP violations can occur 
even when inheritance is not used
b) In statically-typed languages, if the compiler does 
not report any type errors or warnings, then there are 
no LSP violations

A. Only (a) is true
B. Only (b) is true
C. Both (a) and (b) are true
D. Neither (a) or (b) are true



It seems natural to have a high-level module (SessionStore) depend on a low-
level module (the DB), but that creates problematic coupling when B changes 
(e.g., using a different database). High-level modules should influence low-
level modules, not the other way around. We solve this by ”inverting” the 
dependencies so that A uses an interface implemented by B (i.e., they both 
depend on the interface).

Injection is the means of supplying a valid implementation (often by supplying 
the implementation class as a constructor argument).

TL;DR; High-level classes shouldn’t create concrete instances of lower-level 
classes

Quick reminder about interfaces… In statically typed languages, interfaces are 
typically abstract classes (method signatures, but not implementations) that 
specify what methods a class provides (and you can reference an object 
through through interface type). In JS you can implement an interface by 
mixing in new methods.

19

Dependency Inversion
& Dependency Injection

• Problem: A depends on B, but B’s 
interface & implementation can 
change, even if functionality is 
stable 

• Solution: “Inject” an abstract 
interface that A & B depend on
If not exact match, Adapter/Façade
“Inversion”: Now B and A depend on 
interface vs. A depending on B

SessionStore

Database

read_from_db()
store_in_db()

SessionMgr

get_session()
store_session()

«interface»
SessionStore

Database



We want to use an external service for e-mail and may end up using different services 
in different contexts. Instead of tying our code to a specific “concrete” service, define 
an Abstract interface. In this case that interface will not exactly match the similar but 
not identical APIs. Interface serves as an adapter (and a façade – our interface likely 
only provides a subset of functionality of the e-mail services).

An example of DI in React are higher-order components, that is components that take 
other components as props.

20

DI example: Supporting external 
services

Customer

this.emailList

Mailchimp*

subscribe
unsubscribe
updateMember

ConstantContact*

addPerson
delPerson
editPerson

AbstractEmailList

subscribe
unsubscribe
updateMember

Adapter and Façade

Similar but not 
identical interfaces

*Totally made-up APIs



By concretion we mean specific implementation, i.e. MailChimp, instead of abstract 
interfaces, like AbstractEmailList. We often use the adapter pattern when creating a 
common abstract interface for multiple underlying implementations. Façade is used 
to provide a simplified version of an interface.

21

Summary: Injection of Dependencies 
Principle

• What: Rather than one class depending on 
another, have both depend on common interface

• Symptom:
Classes depend on “concretions instead of abstractions”

• Resolutions:
Dependency Inversion and Injection
Adapter (convert one interface to another) and Façade 
(provide simplified interface)



22

Demeter Principle (Principle of least 
knowledge)

Only talk to your friends ... not strangers
You can call methods on:

Yourself
Your own instance variables, if applicable

But not on the results returned by those 
methods



Where is the Demeter violation lurking here? Notice that we are accessing the cash 
property of the customer’s wallet property. Under the Demeter principle we are not 
allowed to go ”past” wallet.

Recall that mocks are synthetic implementations of methods, etc. use for testing, i.e. 
fake objects or methods with known properties or results.

The complexity of the mocking is an indication we have violated the Demeter 
principle. In our new version we call a method on on our instance variables (i.e. 
this.customer) but don’t access properties returned by those (i.e., don’t access the 
cash property on the wallet accessed via customer). As a result, we don’t need to 
mock nearly as much.

23

Demeter example: Method/property 
chains

PaperCarrier

collectMoney()

Customer

wallet

Wallet

cash

collectMoney() {
  this.customer.wallet.cash -= 10;
  this.collectedAmount += 10;
}

collectMoney() {
 this.collectedAmount += this.customer.pay(10);
}

Imagine testing this code. You would need to:
1. Mock wallet with cash property
2. Mock customer with mock wallet

Now just need one mock function



A common example of this (that we accept) is parsing JSON responses in `fetch`. 
Mocking that is awkward (we have to create a mock response, returned by a mock 
fetch…). We utilize libraries to help us with that process! Or in the case of PA4, try to 
avoid mocking fetch entirely and test directly against a mock server.

Note that the long method chains we are talking about here are not the method 
chains we encounter in knex/objection.js for creating queries. That is an example of 
the builder pattern for assembling a complex operation in incrementally. We are not 
”reaching” through to collaborators (the problem Demeter is trying to avoid), but 
instead assembling a configuration of various complexity.

24

Summary: Demeter Principle

• What: Talk to friends & friends of friends;  
everyone else is a stranger

• Symptoms:
Long chains of method calls, leading to mock 
trainwrecks in tests

• Resolutions:
Replace method with delegate (e.g. wrap 
customer.wallet.withdraw in Customer.pay)
Visitor pattern (separate traversal from computation)
Observer pattern (be aware of important events)



Answer: B

From the available description, knex demonstrates Open/Closed (open to extending 
databases without modification), Dependency Inversion (in defining the Client 
interface), and Liskov Substitution (each concrete implementation can stand in place 
of the abstract interface). It may also observe the other principles, but we don't know 
that from this information.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

25

Knex includes an "abstract" Client class for connecting 
with databases. Subclasses of Client exist for each 
database. The correct subclass is instantiated based on 
configuration in the knexfile. Which SOLID principles 
are illustrated by this example (as described here)?

A. Single Responsibility, Liskov Substitution, 
Dependency Inversion

B. Open/Closed, Liskov Substitution, Dependency 
Inversion

C. Open/Closed, Dependency Inversion, Demeter
D. All five



26

SOLID Caveat

• Designed for statically typed languages, so 
principles have more impact in that context
Designed, in part, to avoid changing type signatures, 
recompiling, etc.; not as relevant to JS.

• Use your judgment: Your goal is to deliver 
working & maintainable code efficiently



Recall that our original goal was to minimize the cost of change. And we saw 
many guidelines for doing so. At their heart the guidelines (and with design 
patterns generally) is to separate the aspects that change (from problem to 
problem, or for a given application as it evolves) from those that don’t. By 
doing so, we achieve our goal of minimizing the cost of change.

27

Summary
• Design patterns represent successful solutions to 

classes of problems
Reuse of design rather than reuse code or classes

• Can apply at many levels: architecture, design (GoF 
patterns), computation

• Separate what changes from what stays the same
Program to interface, not implementation
Prefer composition over inheritance
Delegate!
All 3 are made easier by duck typing (like in JS, Python, etc.)

• Much more to learn about — this is just a quick survey



Answer: C

One of the criticisms of Agile is that encourages developers to start without any 
design and thus is too reliant on later refactoring. Agile doesn't preclude all design 
but depending on approach can be dependent on developers keeping past 
experiences in mind (something you might have observed), that is anticipating future 
needs and writing code today accordingly. The issue with P&D is not that the design 
phase leads to poor architecture, but that the designed architecture is no longer the 
right approach as the application evolves.

“One of the risks of agile development is that it can lead to tactical programming. 
Agile development tends to focus developers on features, not abstractions, and it 
encourages developers to put off design decisions in order to produce working 
software as soon as possible. For example, some agile practitioners argue that you 
shouldn’t implement general-purpose mechanisms right away; implement a minimal 
special-purpose mechanism to start with, and refactor into something more generic 
later, once you know that it’s needed. […] This can result in a rapid accumulation of 
complexity.”

“It’s fine to put off all thoughts about a particular abstraction until it’s needed by a 
feature. Once you need the abstraction, invest the time to design it cleanly;”

28

Which of the following is true about 
SW architecture and design patterns in 
Plan & Document vs. Agile processes?
A. P&D's explicit design phase results in poor SW 

architecture with inappropriate use of design patterns
B. Agile prohibits doing any sort of high-level design, the 

code should just evolve
C. Agile can be dependent on developers’ experience to 

plan/architect for functionality not yet implemented
D. None of the above are true



Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition (pp. 155-156). 
Yaknyam Press. Kindle Edition. 

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license

28



Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition (p. 46-48). 
Yaknyam Press. Kindle Edition. 

29

Imagine you are implementing a GUI text editor 
with multi-level undo/redo for both text and 
interface, e.g., cursor position, selection, etc.). 
Your current implementation has a Text class 
that manages the underlying text of the file, 
e.g., inserting and deleting text, and UI class 
that manages the GUI. What are some possible 
designs? Specifically, how could you implement 
undo by extending the existing Text class or 
with a separate class(es).



How would you evaluate this design in the context of the principles we discussed 
today. This design violates Single Responsibility and Open/Closed. The Text class 
seems to have two distinct responsibilities, managing text and managing undo. And 
adding undoable actions unrelated to text requires modifying the text class.

What might you do differently?

Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition (p. 46-48). 
Yaknyam Press. Kindle Edition.

30

Undo log in the Text class

Maintain the undo log in the Text class: 
• Actions, e.g., insert text, add a corresponding 

operation to the internal list of changes.
• To undo the UI would invoke a method on the 

text class to revert the changes.
– For actions related to text update the internals of 

the text class
– For other actions, e.g., selection, call back to the 

user interface code to carry out the undo or redo



An alternate design : A separate `History` class that maintains the undo/redo list. 
Each action adds a corresponding action to this list where the action is an object that 
implements a shared interface. The History class doesn’t know the specifics of the 
individual actions, instead it just walks the list as needed invoking the actions. Each 
operation has a corresponding specialized undo action. “The text class might 
implement UndoableInsert and UndoableDelete objects to describe text insertions 
and deletions. Whenever it inserts text, the text class creates a new UndoableInsert 
object describing the insertion and invokes History.addAction to add it to the history 
list. The editor’s user interface code might create UndoableSelection and 
UndoableCursor objects that describe changes to the selection and insertion cursor.”

This example from adapted from John Ousterhout, and he talks about it in a different 
way, specifically as general purpose vs. special purpose, specifically writing “The key 
design decision was the one that separated the general-purpose part of the undo 
mechanism from the special-purpose parts, creating a separate class for the general-
purpose part and pushing the special-purpose parts down into subclasses of 
History.Action. Once that was done, the rest of the design fell out naturally.”

Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition (p. 46-48). 
Yaknyam Press. Kindle Edition.

31

Alternate design?


