
Beauty is not for its own sake… Good style improves maintainability of code,
improves team efficiency, etc. We have already made extensive use of ESLint and its
“style checking”. Today we will learn about some other tools for evaluating SW style.

I want to distinguish between formatting and the "style” we are talking about here.
Formatting is indeed part of style, but what we are talking about here are
implementation choices that produce correct results but are nonetheless fraught
because that approach makes your code difficult to maintain, is likely to introduce
bugs when you or others change the code, is more likely to have subtle bugs (i.e.,
code only appears to work) or more.

Note that we also automate formatting (e.g., with prettier). Why? It is easier to read
code in a common format, and we don’t want to argue with teammates over
something that can be very personal.

Image from https://www.npmjs.com/package/eslint-config-airbnb-bundle
Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

1

Beyond Correctness

Can we give feedback on software beauty?
• Guidelines on what is beautiful?
• Qualitative evaluations?
• Quantitative evaluations?

What tools are available for ”higher level”
evaluation of our code?

A code smell doesn’t mean that something is wrong, i.e., code smells are not
bugs. The program may function correctly. Instead, a code smell is a “surface
indication” or “hint” that deeper problems might exist. Think of a code smell as
a warning sign.

“Short” and “Do one thing” tend to be correlated. It is obvious why code that
doesn’t meet that criteria might “smell”, but what about “few arguments” and
“levels of abstraction”?

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

2

Qualitative: “Code smells”

SOFA captures symptoms that often indicate
code smells in functions/methods:
• Is it Short?
• Does it do One thing?
• Does it have Few arguments?
• Is it at a consistent level of Abstraction?

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

3

Why “lots of arguments” smells

• Hard to get good testing coverage
• Hard to mock while testing
• Boolean arguments should be a “yellow flag”

If function behaves differently based on Boolean
argument, maybe it should be 2 functions

• If arguments “travel in a pack”, maybe you
need to extract a new object/class
Same argument for a “pack” of methods

What are some attributes of a good news story (and a not so good news
story)? … The same attributes that make for good news stories, also make for
good code.

In the context of code, that means don’t have one function/method that does
everything. Divide it into understandable pieces, and have methods call others.
That is one method/function orchestrates the work of many others. Recall we
saw a similar idea in the context of React components where we talked about
components implementing or composing, i.e., that components should
generally either implement specific functionality or compose (group) other
components together. From the blog post: ‘A component should be described
either as a “component that implements various stuff” or as a “component that
composes various components together”, not both.
(https://www.developerway.com/posts/components-composition-how-to-get-it-
right)

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

4

Single level of abstraction

• Complex tasks need divide & conquer
• Like a good news story, classes, methods, etc.

should read “top down”
+ Start with a high-level summary of key points,

then go into each point in detail
+ Each paragraph deals with 1 topic
– Rambling, jumping between “levels of

abstraction” rather than progressively refining
• Want to avoid “leaky abstractions”

ABC is strictly a software size metric, although it has often been misconstrued as a
complexity metric. Designed in part as an alternative to LOC. Rules are language-
specific…, e.g., in JS functions are considered “branches”. <click> Thus we
would annotate this code as: 1 assignment, 2 branches, and 2 conditions for
an ABC metric of 3.

Fun fact: Flog is a Ruby-specific version of the ABC metrics. The highest Flog score
ever seen on Code Climate for a single method is 11,354
(https://codeclimate.com/blog/deciphering-ruby-code-metrics/).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

5

Quantitative: ABC Software Metric
Counts Assignments, Branches, Conditions:
𝑠𝑐𝑜𝑟𝑒 = 𝐴! +𝐵! + 𝐶!

Guidance: ≤20 per method

function foo()
const a = eval("1+1“);
if (a === 2) {
console.log(“yay“);

}
}

function foo()
const a = eval("1+1“);
if (a === 2) {
console.log(“yay“);

}
}

1 + 2! +2! = 3

A graphical measurement of the number of possible paths through the normal
flow of a program. The graph is the control flow graph (take compilers); each
node is a basic block. If you just had “straight line” code, the complexity would
be 1.

Here, E=9, N=8, P=1, so CC=3 (there is only one connected component, the entire
program).

Image from Wikipedia
Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

6

Quantitative: Cyclomatic complexity
Linearly-independent paths thru code
score = E – N + 2P
E edges, N nodes, P connected components

function myFuntion {
 while (...) {

 }
 if (...) {
 do_something
 }
}

E 9
N 8
P 1
CC 3

Guidance: ≤10 per method

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

7

Quantitative: Metrics

Use metrics “holistically”
• Better for identifying where improvement is needed than for

signing off
• Look for “hotspots”, i.e., code flagged by multiple metrics (what

services like CodeClimate do…)

Metric Tool Target score

Code-to-test ratio Plato/Jest ≤ 1:2

C0 (statement) coverage Jest 70%+

Assignment-Branch-
Condition score

? for JS < 20 per method

Cyclomatic complexity Plato, ESLint < 10 per method (NIST)

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

8

Refactoring

• Start with code that “smells”
• Through a series of small steps, transform

code to eliminate those smells
• Protect each step with tests
• Minimize time during which tests are “red”

Answer: C

Recall that code smells are not bugs, but instead warnings signs that there might be
deeper problems.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

9

Which of the following is not a goal of
method level refactoring?
A. Reduce code complexity
B. Eliminate code-smells
C. Eliminate bugs
D. Improve testability

https://refactoring.com/catalog/decomposeConditional.html

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10

Refactoring has common patterns too
Fowler et al. created a catalog of
common refactorings

Name

When to use

Mechanics

Example

https://refactoring.com/

On December 31, 2008, all Microsoft Zune MP3 players that were booted up on that
day mysteriously froze. If you rebooted on January 1, 2009, it would work again. This
example includes the buggy code, as explained in this [blog
post](http://www.zuneboards.com/forums/showthread.php?t=38143), transliterated
to ES6. Try 10593 (Dec 31, 2008) or 1827 (Dec 31, 1984) to trigger the bug (an infinite
loop).

* `v0.js`: Original transliterated
* `v1.js`: Refactored with more relevant variable names, but no other changes
* `v2.js`: Extract the `isLeapYear` function to improve readability and introduce a test
suite
* `v3.js`: Extracts `addLeapYear` and `addCommonYear` functions to reduce function
complexity. Adds additional test cases for extracted functions.
* `v4.js`: Fixes logic error

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

11

A blast from the past!

On December 31, 2008, all Microsoft Zune MP3 players that were booted up on that
day mysteriously froze. If you rebooted on January 1, 2009, it would work again. This
example includes the buggy code, as explained in this [blog
post](http://www.zuneboards.com/forums/showthread.php?t=38143), transliterated
to ES6. Try 10593 (Dec 31, 2008) or 1827 (Dec 31, 1984) to trigger the bug (an infinite
loop).

let {default: convert} = await import ("./index.js")
convert(400)
convert(10593)

How do you want to tackle this refactoring/debugging?
1. Pull out leap year as a separate function to enable testing.

Recall the rules for leap years, There is a leap year every year whose number is
perfectly divisible by four, except for years which are both divisible by 100 and not
divisible by 400.

function isLeapYear(year) { return year % 400 === 0 || (year % 4 === 0 && year % 100
!== 0);}

2. We have a lot of duplication in the conditionals and subtraction. We would simplify

12

export default function convert(d) {
 let y = 1980;
 while (d > 365) {
 if (y % 400 === 0 || (y % 4 === 0 && y % 100 !== 0)) {
 if (d > 366) {
 d -= 366;
 y += 1;
 }
 } else {
 d -= 365;
 y += 1;
 }
 }
 return y;
}

d: Days since 1/1/1980, where 1/1 is day 1

that to consolidate incrementing the year and checking and subtracting the days.

The key is to expose the bug where d is 366 and it’s a leap year and thus the loop
never ends (since d is > 365 but not decrementing).

// Intermediate
export function isLeapYear(year) {
 return (year % 400 === 0 || (year % 4 === 0 && year % 100 !==
0));
}

export default function convert(d) {
 let y = 1980;
 while (true) {
 const daysInYear = isLeapYear(y) ? 366 : 365;
 if (d <= daysInYear)
 break;
 d -= daysInYear;
 y += 1;
 }
 return y;
}

// Final version
export function isLeapYear(year) {
 return year % 400 === 0 || (year % 4 === 0 && year % 100 !==
0);
}

export function daysInYear(year) {
 return isLeapYear(year) ? 366 : 365;
}

export default function convert(days) {
 let year = 1980;
 let daysLeft = days;

 while (true) {
 const daysInCurrentYear = daysInYear(year);
 if (daysLeft <= daysInCurrentYear) {
 return year;

12

}
 daysLeft -= daysInCurrentYear;
 year += 1;
 }
}

12

The initial version has a cyclomatic complexity of 6, that goes down to a little over 2
and the maintainability estimates (as reported by Plato increase)!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

14

What did we do?

Made date calculator easier to read and
understand using simple refactorings

Extract method is one of most common, and allows
testing “helper” methods separately

Found a bug!
If we had developed with tests, might have been
prevented…

Improved code metrics

Answer: C

There are no absolute right or wrong answers. We can make arguments for several
and could produce counter-examples for specific programs why one is more
important than the others. That said here is my take:
1. Short: Long, but straight-line, code could still be easy to test.
2. One Thing: If code is doing multiple things, but each is simple, could still be easy to
test
3. Few Arguments: My answer. If the arguments matter, then the code has lots of
degrees of freedom to test.
4. One level abstraction: Hard to understand, but not necessarily hard to test

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

15

Which SOFA guidelines is most
important for unit testing?
A. Short
B. Do One thing
C. Have Few arguments
D. Stick to one level of Abstraction

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

16

Refactoring summary

Goal: Improve code structure (as measured by
quantitative & qualitative measures) without changing
functionality (as measured by tests)
1. Use metrics as a guide to where you can improve

your code
2. Apply refactorings (found in following slide, in

Refactoring books, online, etc.)
3. At each step, test newly-exposed seams, then

stub/mock them out in higher-level tests

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

17

Example "smells" and their remedies
Smell Refactoring that may resolve it

Large class Extract class, subclass or module

Long method Decompose conditional
Replace loop with collection method
Extract method
Replace temp variable with query
Replace method with object

Long parameter list/data clump Replace parameter with method call
Extract class

Shotgun surgery; Inappropriate intimacy Move method/move field to collect related
items into one DRY place

Too many comments Extract method
Introduce assertion
Replace with internal documentation

Inconsistent level of abstraction Extract methods & classes

We are starting out projects, how could this be relevant? I suspect some these
already apply to the code you wrote! A "long time ago" is not that long ago… like
maybe last week!

Here we mean “legacy” with its negative connotations. However, we should
remember that legacy SW is by definition successful, otherwise it would no longer be
in use!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

18

What makes code “legacy”?

Still meets customer need, and
• You didn’t write it, and it’s poorly documented
• You did write it, but a long time ago (and it’s

poorly documented)

“Legacy code is simply code without
tests” [regardless of who wrote it or
how pretty it is]
-Michael Feathers

’Superficially, Edit and Pray, seems like “working with care”’ With that care exercised
up front. ’But safety isn’t solely a function of care. … Effective software change, like
effective surgery, really involves deeper skills. Working with care doesn’t do much for
you if you don’t use the right tools and techniques’ – Michael Feathers

What are those ”right tools and techniques”? <click>

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

19

Feathers’ two ways to approach
modifying legacy code

Edit and Pray
1. Familiarize yourself with the

relevant code
2. Plan the changes you will make
3. Make the planned changes
4. Poke around to make sure you

didn’t break anything

Cover and Modify
1. Write tests that cover the code

you will modify (creating a
“safety blanket”)

2. Make the changes
3. Use tests to detect unintended

effects

Think of this as embracing change on long time scales. Keep Baden-Powell’s motto in
mind: “Try to leave the world a little better than you found it”, and the notion of
strategic programming we discussed early on. We want to be making small
investments throughput in improving our code base!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

20

An Agile approach to legacy code

1. Identify places you need to change (termed
“change points”)

2. Add “characterization tests” to capture how
the code works now (in TDD+BDD cycles)

3. Refactor the code to make it more testable or
to accommodate the changes

4. When code is well factored and well tested,
make your changes!

5. Repeat…

Answer: B

Recall that tests are your "safety blanket". Why are the others wrong? Agile
techniques don't guarantee modifiable code. Similarly, just because the code is nicely
structured also doesn't mean you can confidently make changes. How will you know
if you broke something? While it would be nice there were original design documents
available, likely those documents don't correspond to the current code and again
don't help you know if you broke anything.

21

If you’ve been assigned to modify
existing code, which of the following
statements about that code base do
you most hope will be true?

A. It was originally developed using Agile
techniques

B. It is well covered by tests
C. It’s nicely structured and easy to read
D. Many of the original design documents are

available

The first should happen on a scratch branch and with a copy of DB (so you won’t
break anything and can throw your experiments away).
The second helps you define the ground truth for the application. In the best case,
these demos are consistent with the behavioral tests, in the worst case…

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

22

Exploring a legacy codebase: Step 1

Get the code to run!
• In a either production-like or development-like

setting
• Ideally with something resembling a copy of

production database
• A catch: Some systems may be too large to copy

Learn the user stories: Have customers show
you how they use the application

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

23

Exploring a legacy codebase: Step 2+

2. Inspect the database schema
3. Try to build a model interaction diagram

Can be automated for some frameworks, e.g., Rails
4. Identify the key (highly connected) classes

Recall Class-Responsibility-Collaborators (CRC) cards
5. (Extend) design docs as you go:

Diagrams
README, GitHub wiki, etc.
Add JSDoc comments to create documentation
automatically

http://usejsdoc.org/

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

24

Adding tests: Getting started

• You don’t want to write code without tests
• You don’t have tests
• You can’t create tests without understanding

the code

How do you get started?

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

25

Characterization Tests

Establish the ground truth about how the SW
works today

Repeatable tests ensure current behaviors aren’t
changed (even if buggy)
Integration tests are a natural starting point (b/c
they are typically “black box”)

Pitfall: Don’t try to make improvements at this
stage!

Recall
“Given-When-Then”
tests

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

26

Unit- and Functional-level
characterization tests

Use the tests to help you learn as you go:
test('it should calculate sales tax', () => {
 const order = Order.fromJson({});
 expect(order.computeTax()).toBe(-99.99);
});

ValidationError: total: is a required property

test('it should calculate sales tax', () => {
 const order = Order.fromJson({ total: 100.00 });
 expect(order.computeTax()).toBe(-99.99);
});

Expected value to be: -99.99 Received: 8
test('it should calculate sales tax', () => {
 const order = Order.fromJson({ total: 100.00 });
 expect(order.computeTax()).toBe(8.00);
});

✓ it should calculate sales tax

Answer: C

Because integrations tests don't involve isolated components, they are more likely to
depend on the database somehow and may require a test database or a form of high-
level mocking. We have already seen examples of automating user interactions, e.g.,
”clicking” (answer A) and know what integration tests require less information about
how the code works since integration tests treat the code as a black box.

27

Which of the following is a difference
between integration-level and unit-
level characterization tests?

A. Unit tests can be created by automating user
actions, integration tests cannot

B. Integration tests require more information
about how the code works

C. Integration tests are more likely to depend
on the database or other similar
infrastructure

The only people that can see the Statue of Liberty’s hair are those that climb up the
torch. Yet the artist(s) included hair anyway!

Our perspective can be more “glass half full” than this slide suggests. As Ousterhout
notes in his book about software design, many aspect of good design slow you down
in the beginning (create extra work). He writes “If the only thing that matters to you is
making your current code work as soon as possible, then thinking about design will
seem like drudge work that is getting in the way of your real goal.” But …

“the investments you make in good design will pay off quickly. The modules you
defined carefully at the beginning of a project will save you time later as you reuse
them over and over. The clear documentation that you wrote six months ago will save
you time when you return to the code to add a new feature[…] Good design doesn’t
really take much longer than quick-and-dirty design, once you know how.”

“The reward for being a good designer is that you get to spend a larger fraction of
your time in the design phase, which is fun. Poor designers spend most of their time
chasing bugs in complicated and brittle code. If you improve your design skills, not
only will you produce higher quality software more quickly, but the software
development process will be more enjoyable.”

Ousterhout, John K. . A Philosophy of Software Design, 2nd Edition (p. 176). Yaknyam

28

What is the best tool for detecting
(and fixing) code smells/problems?

There is no best tool!
The primary
enforcement mechanism
is your self-discipline!
Beautiful code is the
result of your
professionalism to do
the “Right Thing” not
the easy thing. The tools
just help along the way.

earthcam.com

Press. Kindle Edition.
Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

28

