
In a web 1.0 world few sites had an API, so implementing this functionality was very
difficult. Often you would need to effectively “log in” as the user (which required the
user to share their password). This precluded collaboration between services.
Increasingly services like Facebook and others provide APIs that facilitate this
integration. In this model, which I suspect you have used extensively, when an
application wants to access data held by a 3rd party, e.g., Facebook, it redirects the
user to that 3rd party to login directly (authenticate) and authorize the application
(e.g., NYTimes) to access the user’s data. If the user agrees, Facebook, or other 3rd
party, sends back a token that the application (NYTimes) can use to retrieve just the
data its authorized to access.

Note the distinction between authentication and authorization, the user
authenticates to their identity and separately authorizes the third part access to their
data..

Single sign-on is a variant of this approach (without the data sharing, or only minimal
data sharing), where we rely on authentication provided by a third party, e.g.,
Microsoft or Google, to verify the person is the same person who initially setup the
account… Unless there is a compelling reason for an alternate approach, any projects
that need authentication should use a 3rd party (specifically Google). This is an aspect
where we want to avoid DIY if we can… it is just too easy to get it wrong.

1

4/17/25

“3rd party” authorization to facilitate
collaboration between services

As a NYTimes reader, I want to know what
articles my Facebook friends are reading, so that
I can find articles I might be interested in
NYTimes needs to be able to access your data on
Facebook, but
You don’t want give the NYTimes your Facebook
password
Instead, you authorize NYTimes to just access
specific Facebook data (with a token)

For example, in Simplepedia we disabled the Save button, but that is just an HTML
attribute. The user could easily ”re-enable” that button in their browser.

When we have tested our servers, we used the console to make requests directly to
the API. Our front-end application was not involved. Someone with malicious intent
could similarly make requests to your server without involving your front-end
application in any way. So, you can’t rely on any “protections” built into that
application.

2

4/17/25

Reminder: Never trust the client

The user has total control over their browser
Can bypass any “protections” you built into app

Or could access your API end points directly
Your JS isn’t needed to make HTTP requests

Thus, any validation, authentication and
authorization must be performed on a/the
server (or with its assistance)

We want to distinguish between authentication, proving your identity, and
authorization, proving that you are allowed to perform some action. This is a familiar
notion to us, that different users may have different roles, or privileges, and that just
because I have an account on a service, just because I am authenticated, doesn’t
mean I can access all data, routes, etc.

In many cases authentication is a prerequisite to authorization, that is first I login,
then I can access certain data/features. However, in widely used 3rd party workflows,
i.e., where an application is accessing data held by a third party, that application uses
a cryptographic token, issued by the 3rd party, to prove the user has authorized it to
access that data, etc.

In our practical we will implement both aspects, i.e. authn and authz, albeit with
simple authorization – some actions are restricted to logged in users (but we don’t
distinguish between different users). In many of your applications you will need more
sophisticated approaches to protect sensitive data.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

3

4/17/25

Authentication vs. authorization

Authentication (authn)
Are you who you say you are?
Do you have some kind of secret that proves your
identity?

Authorization (authz):
Are you allowed to take that action?
Does the application record you as having that
privilege, or do you have some kind token granting
that privilege?

Answer: D

Answers without D, potentially send data to the client that they are not authorized to
see. Recall we can't trust the client, filtering data out in client, doesn’t prevent them
from viewing it in the network tab for example. If are we effectively enforcing
authorization on the server, then A (and thus E) is not necessary and is just unneeded
code/work.

4/17/25

4

How would you best implement the following item in
the Class Interactor's backlog, “Users should only be
able to list rooms they are administrators of”? Assume
you have required user to authenticate to view the
relevant React component.

A. Filter the list of rooms in the React component with
current user as an administrator

B. Require authentication in '/api/rooms' route
C. Answers A and B
D. Answer B and filter rooms database query by

administrator status
E. Answers A and D

Answer: A

As its name suggests, the authenticated middleware implements authn, but only
authn. Block 2 is required for authz, that is restricting access to this endpoint to
administrator. Block 3 doesn’t perform any authentication or authorization.

4/17/25

5

GET /api/rooms/[id]/roster
router.get(authenticated, async (req, res) => {
 const member = await Roster.query()
 .where({ userId: req.user.id, roomId: req.query.id })

 .first();
 if (!member || member.role !== "administrator") {
 res.status(403).end("Forbidden");
 return;
 }
 const roster = await Room.query()

 .where({ id: req.query.id })
 .withGraphFetched("user");
 res.status(200).json(roster);
});

authn authz
A 1 2
B 2 1
C 1 1
D 1 3

1

2

3

Which code implements which functionality?

Middleware sends 401 “Unauthorized”
if user not logged in

Answer: D

We can approach this via elimination, that is A-C are all false. The requestor is
allowed to do those operations you have authorized, not everything you can do. The
requestor doesn’t have your login credentials (just a token) and so a breach at the
requestor doesn’t compromise your login credentials at the provider. And while you
can revoke future access, you can’t “revoke” access to data the requestor has already
obtained. We can however can typically set access to only last for a certain amount of
time before it expires and needs to be renewed (or is terminated).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

6

4/17/25

Which of the following is true about
3rd party authn and authz between
requestor and a provider?

A. Once completed, the requestor can do anything
you can do on the provider

B. If your login credentials on the requester are
compromised, your login credentials on the
provider are also compromised

C. If the provider revokes access, the requester no
longer has any of your info

D. Access can be time-limited to expire on/after
pre-set time

That is a lot going on! Fortunately, most of this is transparent to us (it is handled by
NextAuth). At the end of this process, NextAuth is creating an encrypted token that is
stored on client and sent with each request. We use that token to verify users.

7

4/17/25

Our 3rd party authentication workflow

https://developers.google.com/identity/protocols/oauth2#webserver

In the example we use a cryptographic signature algorithm, with a secret key known
only to the server, to “sign” the data payload, that is effectively compute a hash. Any
change to the data payload will change the signature, and thus we can detect
changes to the data. And since the key is a secret, any attempt to generate a fake
token, i.e., generate a fake signature, will fail validation with the real key. There many
variations on this general approach using different cryptographic primitives, including
public-private key encryption, but they share the common feature that the server can
detect if the client has manipulated the token.

What is in the data payload in the token? Typically, just a “handle” or pointer to data
the server maintains, e.g., unique identifier for the user, session, etc. That is the data
in the payload is not typically itself sensitive.

What is a fundamental limitation of this approach? The token is all the requestor
needs to obtain the protected resource. Thus, the client must protect that token.

8

4/17/25

Building blocks: Tamper evident tokens
Using cryptographic methods sign (and
optionally encrypt) token data

🔑

Data

Secret Key

Signature

2. Compute cryptographic
signature of data, construct
token with data and signature

Data Signature

1. Client requests
access

3. Request data
by sending token

Data Signature

4. Verify signature

Server Client

9

4/17/25

Creating users as part of
authentication

NextAuth API handler

Client creates (e.g.,
signs-in) or updates
token

Yes?

Fetch user data, add user
id to token

Query for existing
User in DB

Create new User
entry in DB

No?

Token sent to client

What is the value of statelessness? Treats requests independently. No need to
maintain client’s previous interactions, and thus different servers can handle
different requests.

We use similar cryptographic approaches to what we described previously for
ensuring that cookies are tamper evident.

Note that we switch to using cookies because we are authenticating with our
own server. Cookies are only sent to the server that set them, so when
interacting with 3rd party APIs we will continue to use tokens. We could also
use tokens with our own API (may be needed if not clients are not a browser),
but I think we will find cookies easier, since they are transparently handled by
the browser and automatically sent by fetch (in more recent versions of the
specification). While tokens must be explicitly sent with each request (sounds
like a good

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10

4/17/25

Managing statelessness: Cookies

• Observation: HTTP is stateless
• Early Web (pre-1994) didn’t have a good way

to guide a user “through” a flow of pages…
• IP addresses are shared
• Query parameters hard to cache, makes URLs

private information
• Quickly superseded by cookies

Set by server, sent by browser on every request
Since client-side, must be tamper evident

Remember: Never trust the client!

When we first login, or connect again (request a new page), we also request an
updated session token. Doing so sets a cookie (in our browser) with the encrypted
token that is sent with every subsequent request. That is when I request the ”secure”
page from the server, or make a fetch, that cookies is being sent with my request to
prove my identity.

4/17/25

11

1. Request session
token on first
connect/login (i.e.,
set cookie w/
encrypted token)

2. Send cookie with
subsequent requests
to authenticate

Recall that with public-private key encryption, the public key can decrypt messages
communicated with private and vice versa. I give out the public key widely so that
partners can decrypt my messages (and know those messages are from me) and
encrypt messages to me (which only I can read). The browser and server use key
exchange methods to bootstrap this encrypted channel after verifying that the
server’s certificate was signed by a trusted certificate authority. That indicates that
the server is who it says it is…

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

12

4/17/25

Preventing eavesdropping with SSL

Since we use the token/cookie to prove identity
we need to keep it secret
Attacker could eavesdrop on communication
between browser and server to intercept
credentials (and impersonate user)
SSL (HTTPS) encrypts communication between
browser and server (using public-private key
encryption)

13

4/17/25

What SSL does and does not do

Prevents eavesdropping on traffic between
browser and server
Assure browser that the server is legitimate (for
some value of legitimate)

✘Validate identity of user
✘Protect data after it reaches the server
✘Ensure server doesn’t have other vulnerabilities
✘Protect browser from malicious server

Some of these we have talked about, e.g., eavesdropping and how we could use SSL
to mitigate that risk. But many more we won’t discuss or only touch on briefly. For
example…

14

4/17/25

Securing our applications

There are many potential vulnerabilities
• Eavesdropping
• (SQL) injection
• Man-in-the-Middle/Session hijacking
• Cross-site scripting (XSS)
• Cross-site request forgery (CSRF)
And much more…

Here is an example of where want to take advantage of the features of our
tools/frameworks for mitigating potential vulnerabilities. This feature isn’t unique to
Knex, all frameworks/languages will implement safe substitution in some way. And
we want to make sure to use that feature.

Behind the scenes Knex is parameterizing the query, e.g., “SELECT * FROM ‘Article’
WHERE id = $1” and passing the user supplied value separately to be inserted by the
database engine. These are treated exclusively as values and so can’t be executed
directly, i.e., in this example we would get a type error or try to explicitly match “1;
DROP
TABLE Article; --”.

15

4/17/25

Example: SQL injection

https://xkcd.com/327/

knex.raw(`SELECT * FROM Article WHERE id = ${id}`);

SELECT * FROM Article WHERE id = 1; DROP TABLE Article; --

User supplied input

Knex('Article').where('id', id); // Knex automatically sanitizes

We have only scratched the surface of potential vulnerabilities. It is important for us
to review the security recommendations for our chosen frameworks and make sure
we are following (and staying up-to-date) with best practices. One of the advantages
of more comprehensive frameworks is that they often incorporate these best
practices into the implementation by default. For example, you will see CSRF
protection built into NextAuth (it generates tokens to be sent along with requests to
validate that request came from your site not from an attacker). That is not to say
that using a framework guarantees we aren’t at risk, but a widely used, well tested
framework is likely more robust than anything we would build ourselves if we weren’t
experts in that domain…

https://owasp.org/www-project-top-ten/

16

4/17/25

Securing our applications

There are many potential vulnerabilities
• Eavesdropping
• (SQL) injection
• Man-in-the-Middle/Session hijacking
• Cross-site scripting (XSS)
• Cross-site request forgery (CSRF)
And much more…

