
We previously introduced the role of the server: to provide persistence, a means for
communicating between users and a secure environment (controlled by you) for
operations that could/should not be performed by the untrusted client. Today we will
focus of the first of those roles – persistence, that is saving data for future use.
Although in doing so we will also touch on data integrity and related issues.

1

4/8/25

Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. SQLite,
PostgreSQL)

Routing &
Controllers
(e.g. NextJS)

Models
(e.g.knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

Our memory backed server worked (and was nice and simple) but had a major
limitation, all modifications were lost when we reloaded the server. That is obviously
not something we can tolerate in a real application. But the in-memory approach also
has many other limitations that make it a poor choice for any real application.

What are those limitations, or perhaps from a more optimistic perspective, what are
benefits of using a real database system as the persistence tier for our application
(other than that when restart out server/the database the data is still there!) [clickl]

2

4/8/25

Why a database?

• Efficient random access when total dataset is too
large to fit in memory

• Fast and complex queries (not fast or complex)
• Model relationships within the data
• Transactions and other forms of fault tolerance
• Security (and management tools)

// pages/api/articles/[id].js
nc.get((request, response) => {
 response.status(200).json((articles.get(req.query.id));
});

What are the limitations of the memory-backed
server (or what missing features do we want)?

In the typical setup the database is its own process, and often running on a separate
machine(s), and our application server (i.e., running on Node) communicates with the
database server via TCP/IP or some other message-based protocol. That interaction
occurs via SQL (a standardized language for querying relation databases) or a custom
domain-specific language.

Although I should note that one of the databases we will use, SQLite, is not a server.
It is a library that runs inside the “client” process, accessing a database stored entirely
within a single file. As an aside, SQLite is one of the most widely-used pieces of SW
ever written. It is embedded in basically everything, e.g., web browsers, iOS, etc.,.

3

4/8/25

Database client and server

App. Server
(e.g.NodeJS)

Database
(e.g., SQLite,
PostgreSQL)

Persistence Tier

Often separate server or processMessage-based protocol
(over TCP/IP, etc.)

Interface is typically SQL or
custom DSL

I just mentioned the term “relational database”. That is a term for a particular class of
database management tools, it also sometimes referred to via “SQL”, which is really
the name of the query language used by relational DBs. The alternative is often called
“NoSQL”, or more appropriately “non-relational” databases. An example of the latter
would be Google’s Firebase.

One of the decisions we will need to make in our project is what kind of database to
use. Like many decisions we encounter in class there is no right answer – although
the entire Internet will have an opinion – just tradeoffs. From my perspective, NoSQL
is more flexible, and perhaps easier to get started, but the flexibility begets
challenges in managing your data. In contrast, relational databases have a slightly
steeper learning curve but force us to organize our data in helpful ways. A relevant
analogy might be a statically-typed languages like Java (relational) vs. dynamic
languages like Python (non-relational). The latter is quick to get going but is
susceptible to type errors that are not possible in Java…

Before we can pick a database, however, we need to figure out how the data in our
application is structured (i.e., determine the data model as discussed previously) and
only then can we pick a database that make sense for our application. Again, from my
perspective, a well-designed data model is more important than the choice of
database system.

4

4/8/25

SQL vs. NoSQL
Really: Relational vs. Non-Relational

Relational (RDBMS) Non-Relational
Data Table-oriented Document-oriented, key-

value, graph-based, column-
oriented, …

Schema Fixed schema Dynamic schema
Joins Used extensively Used infrequently
Interface SQL Custom query language
Transactions ACID CAP

SELECT * FROM people
WHERE age > 25;

db.people.find(
 { age: { $gt: 25 } }
)

Glossary:
SQL: Structured Query Language
ACID: ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties of
database transactions intended to guarantee validity even in the event of errors,
power failures, etc.
CAP: Two of consistency (most recent data), availability, and partition tolerance.

4/8/25

4

Recall CRC cards are like user stories, but for classes. Each index card contains:

• On top of the card, the class name
• On the left, the responsibilities of the class, i.e., what this class "knows” and

"does". For example, a "car" class may know how many seats and doors it has and
could "do" things like stop and go.

• On the right, the collaborators (other classes) with which this class interacts to
fulfill its responsibilities

The CRC cards help guide the design of our models and database schema. The
“knows” are going to become the fields that we store in our database for each model
and the knows/collaborators define the relationships or associations between those
models. Recall that:
• A film has a one-to-many relationship with genres (i.e., film ”has many” genres)
• There is a many-to-many relationship between Users and Films via the ratings, i.e.,,

a film has been rated by many users, and a user has rated many films. This type of
relationship is often called a “has many-through” association.

These terms are semi-formal (note different tools use slightly different names, but
the concepts are the same), that is they map directly to the design of the database
schema. We are effectively designing database tables as we work out these relations.
That said, I encourage you to approach the data modeling from this “direction”, that is

5

4/8/25

Recall: Film Explorer CRC cards

Film
Responsibility Collaborator
Knows its title
Knows its plot overview
…
Know which genres it is Genre

*Kent Beck & Ward Cunningham, OOPSLA 1989

Genre
Responsibility Collaborator
Knows its descriptor

”one-to-many”

User
Responsibility Collaborator
Knows user’s name
…
Knows movies I rated Rating

Rating
Responsibility Collaborator
Knows rating
Knows its owner User
Knows its film Film

”many-to-many”

start by modeling the nouns in your application (and their relationships) then choose
and design your database instead of starting with the database design then
developing the data model.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

4/8/25

5

The relations/associations you will typically encounter are listed here (again a quick
reminder that different tools will use slightly different terminology, but the concepts
are the same). We can think of these associations as design patterns that will enable
us to utilized libraries/frameworks for the ”parts that are the same every time”, i.e.,
automatic validations, optimized queries and more.

A note: the “through” modifier can be applied to one-to-many relationships as well
and typically implies that the you might want to work with the “through” noun
independently of the two sides of the relationship. We still would want to identify the
relationship as one-to-many to take advantage of built-in validations.

6

4/8/25

Thinking in relations/associations

• “HasOne” / “BelongsToOne”
One-to-one relationship, e.g., Supplier and Account

• “HasMany” / “BelongsToOne”
One-to-many relationship, e.g., Film and Genre

• “ManyToMany”
Many-to-many relationship (often called “has many
through”), e.g., User and Film through Rating

Answer: B

A customer can have many animals (pets), but each animal is presumably owned by a
single customer. Although we could imagine situations though where C might be
needed… What would such an example be? Multiple customers were the
owners/responsible parties for a pet.

We could imagine there is data associated with the specific Customer-Animal relation
(e.g., insurance), however that each association may be its own entity doesn’t itself
change that it is a one-to-many relation.

7

4/8/25

You are developing an application for a
veterinarian’s office. How would you
model the relation between Customer
and Animal?

A. One-to-one, e.g., “HasOne”
B. One-to-many, e.g., “HasMany”
C. Many-to-many, e.g., “HasManyThrough”

Answer: False

Consider an application where a user can make and like comments. A user has many
comments via posting (a “has-many” relation), and user also has many comments via
liking (a “many-to-many” or “has-many-through” relation).

8

4/8/25

True or False? Two models can only
have one relation.
A. True
B. False

[click] The associations can be directly translated to URLs. That is a ”has many”
relationship is typically expressed through nested URLs, and thus we infer ”has many”
relationship. In this context we might describe assignments as a subordinate resource
of a course. For viewing a single assignment this may not seem very compelling, as
we could also retrieve the assignment (presumably) with just that id, e.g.,
//assignments/203689. Where it might be more relevant is for POST, etc.

[click] Here the URL embeds the associated resource, i.e., we are creating a new
assignment in the course indicated by the URL.

In theory we can go infinitely deep with this nesting, in practice we shouldn’t go more
than one or two levels, otherwise it gets unwieldy.

4/8/25

9

Interlude: RESTful URLs for
associations

What association is implied by this URL (from
Canvas)?

/courses/11868/assignments/203689

A Course “has many” Assignments
Route Controller Action
GET /courses/:course_id/assignments Retrieve all assignments in associated

course
POST /courses/:course_id/assignments Create new assignment in associated

course
…

With our CRC cards we focused on modeling our data independent of how it is stored.
We will now implement those models using a relational database. Our mental model
is a table (e.g., a spreadsheet table). The attributes/columns are typically the “knows”
in your CRC cards, that is the schema is a nearly direct translation of the CRC card.
And the rows are specific entries, e.g., specific films.

The Primary Key is a unique identifier for a record (that should be not be reused).
Often it is an arbitrary (auto-incrementing) integer, e.g., the “id” in Simplepedia, but
does not need to be (and it can even be a composite of multiple columns) so long as
it is unique. The schema includes type (storage size) and can further include indexes
(think hash tables or trees) to speed up queries and other constraints, like not null.

10

4/8/25

RDBMS mental model

id title overview release_date poster_path vote_average rating
int string text string string float int
1 Star… Princes… 1977-05-25 /tvSLB… 7.7 3
2 2001: A… Huma… 1968-04-05 /90T7… 7.5 4

Film tableSchema (name and type)

Primary key: Unique identifier for record (can be 1+ columns)

Noun/Model, e.g., “Film” ⇔ Table
Model attributes ⇔ Columns

[click] Index, Cursor
[click] Each table has its own schema

11

4/8/25

RDBMS vocabulary
DB instance (e.g., PostgreSQL)

Databases

Rows

Attributes/Columns

Has 0+

Tables

Has 0+

Contains 0+

With 1+

Index
Optimized lookup tables
(e.g., tree) for specific
columns

Cursor
Iterator into the result set
that can obtain a few
documents at a time

Each table has a schema
with types, optional primary
key, optional constraints

We generally won’t write “raw” queries, instead we will use the knex.js query builder
to abstract DB-specific differences, handle “safe” parameters substitution, etc.. We
will further wrap knex with an ORM library (Object Relational Mapping) that provides
a more object-oriented interface to our database (stay tuned).

12

4/8/25

Writing SQL queries

SELECT columns FROM table WHERE conditions;
INSERT INTO table(columns) VALUES (values);
UPDATE table SET column=value, … WHERE conditions;
CREATE TABLE table (column Type, …);

“Raw” queries

SQL Query Builder (knex.js)

MySQL

PostgreSQL

sqlite

ORM
(objection.js)

Our typical usage Schemas

Queries
Marshaling to JSON

Associations
Validation

Migrations are the answer to how we smartly evolve our database schema at at all
stages in our application lifecycle, from creating the initial database schema to safely
evolving the database to add features to our production application (which
presumably has customer data in it). While we could modify our database manually.
We won’t. Instead, we define a series of migrations scripts that evolve the schema
from an empty database to the desired state.

Each migration has two parts, an “up” function that makes the desired changes, e.g.,
creating a table, adding column, etc. and the a “down” function that reverts those
changes. Performing the up function and then the down function should return the
database to its prior state. Each migration is incremental, that is it makes the “next”
set of changes to the prior database/schema data. For example, if you add a feature
that needs a new column in an existing table, we create a migration that adds that
column (and sets an appropriate value for existing entries).

Migrations are a key part of our “overall” DevOps approach.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

13

4/8/25

Managing Schema: Migrations
Customer data is critical! How do you evolve your
application without destroying any data?
• Maintain multiple databases (e.g., test, development,

production, …)
• Change schema/data with scripted migrations

Advantage of migrations:
+ Track all changes made to DB
+ Manage with VCS
+ Repeatable

Migrations create/delete tables, add/remove/modify
columns, modify data, etc.

Why does it work this way? The goal for migrations is to enable to you to evolve a
database that is in use and has customer data that you don’t want to lose. Thus, we
don’t want to “double apply” the changes in a migration. And there isn’t the
expectation that we would go back and modify already implied migrations because
that would invalidate the data.

Modifying a migration is common during development, however. If you do so, either
delete the database and rebuild from scratch (easy with SQLite – just delete the file -
less so with other RDBMSs) or more robustly, rollback the relevant migrations
(invoking the ”down” operations) then reapply the migrations after the making the
edit.

14

4/8/25

Frequent error: Migrations are tracked
by date-time

Knex et al. apply migrations in date-time order and
track the last migration applied
• Applying migrations multiple times won’t have any

effect
• Modifying and re-applying a migration won’t have any

effect
If you modify a migration, rollback then reapply

migrations/20190424165216_users_and_articles.js

Date and time for this migration

Start here day 2:

These associations have specific schema associated with them. That is the association
will determine what columns we need in our database. Specifically …

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

15

4/8/25

Specific schema is needed to
implement associations

Film
Responsibility Collaborator
Knows its title
Knows its plot overview
…
Know which genres it is Genre

*Kent Beck & Ward Cunningham, OOPSLA 1989

Genre
Responsibility Collaborator
Knows its descriptor

“one-to-many”

User
Responsibility Collaborator
Knows user’s name
…
Knows movies I rated Rating

Rating
Responsibility Collaborator
Knows rating
Knows its owner User
Knows its film Film

“many-to-many”

The first approach is what we would implement in a memory backed server (and
most NoSQL DBs). All the data for film, including its one or more genres are packed
together in a single, albeit variable sized, object. No additional data is required. In
contrast, a normalized approach breaks the film into two fixed size parts, the film
itself and separate genre entries, which are linked together via foreign keys. We need
to include additional columns/attributes - the filmId column - to create the
connection between the two tables. The second, normalized, approach is typically
used with RDBMS (these are the relations in the name).

We could describe normalization as eliminating repeated information in a table by
decomposing repeating entries into separate linked tables. The data is reconstructed
via join operations (to come…)

More specifically, “first normal form” enforces these criteria: 1) Eliminate repeating
groups in individual tables, 2) Create a separate table for each set of related data, 3)
Identify each set of related data with a primary key

Foreign keys enforce the connection between two tables. A foreign key is a constraint
not a type. To insert an entry into Genre, there must be a corresponding entry in the
Film (it will fail if there is no Film). Ensuring that all foreign key references are valid is
termed maintaining “referential integrity” and is one of the benefits of RDBMs.

16

4/8/25

Two approaches to Film ⇔ Genre

id … genres

1

2

3

+ Fewer tables and joins
- Variable sized records
- Trickier to search

De-normalized Approach

id …

1

2

3

Film table Film table Genre table
filmId genreId

1 63

1 14

2 14

Serialize multiple genres into
attribute, e.g., “[63, 14]”

Normalized Approach

Foreign Key referencing
Film.id links tables

When we implement this route to on the film explorer server, we want to obtain all
the data for this film, including its genres. But now that data is separate. How do we
combine the data from the two tables?

17

4/8/25

Associations: “One-to-many” example

From Film table

From Genre table

GET /api/films/11
Desired response

{
 "id":11,
 "title":"Star Wars: Episode IV - A New Hope",
 …
 "genres":[{ "filmId": 11, "genreId": 12 } …]
}

Here we see two approaches to construct the entire object returned by this route:
1. The multiple queries approach first gets gets the film, then the associated genres.
2. The join approach conceptually builds a table with a row for each combination of

movie and genre (with both sets of columns and duplicated movie entries) and
then filters that table according to the join conditions and where clause, etc.

The former requires more queries (more latency), but it is simpler to parse into tree
of Objects. The latter is one (complex) query but parsing results into objects will be a
little more involved.

In practice we will not implement these queries directly. Instead, we will use the
(Objection.js) ORM to create the queries for us. Here we are telling Objection to
eagerly, as opposed to lazily, fetch and populate the genres. The ORM uses the
associations defined in the model class to generate the appropriate query and
construct the final object.

18

4/8/25

Associations: “One-to-many” example

filmId genreId
int int
12 63
12 14

Genre table

Foreign Key referencing Film.id

SELECT `Film`.* FROM `Film` WHERE `Film`.`id` = 11;
SELECT `Genre`.* FROM `Genre` WHERE `Genre`.`filmId` IN (11);

GET /api/films/11

SELECT `Film`.`id` AS `id`, ...,
FROM `Film` LEFT JOIN `Genre` AS `genres`
ON `genres`.`filmId` = `Film`.`id`
WHERE `Film`.`id` = 11

Film.query().findById(id).withGraphFetched('genres')
Fetch the film and all of its genres

How did Objection.js know to generate that queries from that terse set of calls? We
specified the relation in the Model. Here is the relevant portion of Film Model. We
specify a one-to-many relation named “genres” (the key in the object return by
relationMappings) and the relevant columns in the DB that implement that relation. It
is that name (and relation) that we are referencing in withGraphFetched. Using that
name, and the corresponding association information in the model, Objection can
generate the relevant query.

4/8/25

19

Implementing “one-to-many” with
Objection.js

class Film extends Model {
 static get tableName() { return 'Film'; }
 …
 static get relationMappings() {
 return {
 genres: {
 relation: Model.HasManyRelation,
 modelClass: Genre,
 join: {
 from: 'Film.id',
 to: 'Genre.filmId',
 },
 },
 };
 }
}

Film
 .query()
 .findById(id)
 .withGraphFetched(
 'genres'
)

SELECT `Film`.* FROM `Film`
 WHERE `Film`.`id` = 11;
SELECT `Genre`.* FROM `Genre`
 WHERE `Genre`.`filmId` IN (11);

Relevant
columns in DB
schema

Joins are such a key feature of an RDBMS I want to briefly expand on what is going on
behind the scenes. Our mental model for joins is a filtered cartesian product. That is
the database system is creating all combinations of entries from the Film table and
the Genres table and then only keeping those where the join criteria, in this case that
Film.id == Genre.filmId, is true. The actual implementation is more efficient than that
though!

20

4/8/25

Joins as filtered cartesian product

Film.id … Genre.filmId Genre.genreId
1 1 63
2 1 63
3 1 63
1 1 14
2 1 14
3 1 14
1 2 14
2 2 14
3 2 14

Film × Genre cartesian product

Film.id == Genre.filmId

Our previous response was the direct output produced by Objection.js as it joined the
Film and its genres. In many cases that is exactly what we want. But we notice it
contains lots of extraneous data (i.e., repeats of the filmId). We could imagine want
to strip that out or otherwise modify the response. One place to do is in the API
handler. Keep in mind that is just JavaScript code and so we can execute other
operations, like transforming the genres. If we wanted to do this every time with your
model, we are best off integrating that transformation into the model itself..

21

4/8/25

Interlude: Refining server responses

GET /api/films/11

{
 "id":11,
 "title":"Star …",
 …
 "genre_ids":[12,28,878]
}

Desired response
{
 "id":11,
 "title":"Star Wars: Episode IV - A New Hope",
 …
 "genres":[{ "filmId": 11, "genreId": 12 } …]
}

const { genres, …film } = …;
response.send({
 …film,
 genre_ids: genres.map(g => g.genreId)
});

The last assumes we have obtained the movie and the user already in the handler,
e.g. via fetchById.

22

4/8/25

Ratings: A “many-to-many” association

Get a movie with its ratings?
GET /api/films/12
Film.query().findById(id).withGraphFetched('ratings')

Create a new rating for a movie?
POST /api/ratings
Rating.query().insert({…})
Or from a movie
POST /api/films/12/ratings
movie.$relatedQuery('ratings').insert({…})

filmId userId rating
int int int
12 4 2
53 4 3

Foreign Keys and Primary Key

Rating
”Join Table”

Insert rating without either related
model object (User or Film)

Insert rating from Film object

These are established designs for these relations, that is once you define the relation
we know where the keys need to go. We don’t need to figure that out every time.
[end]
Why does the foreign key need to go in the “many” side of the relation? Recall we
want the records to be fixed size. If went it in the ”one” side, we would potentially
have multiple entries, i.e., a variable length array of keys.

23

4/8/25

Where do the foreign keys go?

• One-to-One or “HasOne”/“BelongsToOne”
Foreign key typically in the “BelongsToOne” side
(although could be reversed)

• One-to-Many or “HasMany”/“BelongsToOne”
Foreign key in “BelongsToOne” side (the “many”
side of relation)

• Many-to-Many
Foreign keys in join model, e.g., Rating in “User and
Film through Rating”

Answer: D

Answers A & B are missing foreign key constraints and thus will not enforce that a
genre entry must be associated with a valid film. When a Film is a deleted, we want
to delete all of its genre entries, onDelete('CASCADE') does that. Answer C/3 could
work but would require an additional attribute, i.e., require more space than D.

24

4/8/25

Which of the following is the best migration (schema)
for the Genre table in the Film Explorer? Note that
`onDelete('CASCADE')` specifies that rows are deleted
from the table if that corresponding row is deleted
from the referenced table.
A.
table.increments('id');
table.integer('filmId');
table.integer('genreId');

B.
table.integer('filmId');
table.integer('genreId');
table.primary(
 ['filmId', 'genreId']);

C.
table.increments('id');
table.integer('filmId’)
 .references('id’)
 .inTable('Film');
 .onDelete('CASCADE');
table.integer('genreId');

D.
table.integer('filmId’)
 .references('id’)
 .inTable('Film’)
 .onDelete('CASCADE');
table.integer('genreId');
table.primary(
 ['filmId', 'genreId']);

In the Film Explorer application, the model is a Film. At many points in the application
there is no explicit model class, just a plain old JavaScript object (POJO) representing
the records in the table. Depending on the application we might not need much
more. For example, Simplepedia PA4 just uses POJOs. But often our applications
could and do benefits from established design patterns and built-in functionality
offered by an ORM library (Object Relational Mapping). ORMs are a design pattern for
mapping database schema to an object whose methods/properties correspond to
attributes in DB, DB queries, etc.

We already saw use of the ORM model to express and implement associations
between models (the eager withGraphFetched), some other features are:
Validations: Exactly what they sound like, example of Aspect-oriented programming
(i.e., these validations are relevant everywhere the model is created/used. Instead re-
implementing that code, we do it once).
Virtual attributes: Convenience ”attributes” derived from actual attributes/columns in
DB.

Just how different of a database can a given ORM support? Some… Across different
RDMSs, e.g., sqlite, MySQL and PostgreSQL. Yes. Relational vs. Non-relational?
Typically, no.

25

4/8/25

Film model (M in MVC)

• Express associations between models
• Validate user rating is 0-5
• Provide “virtual” attributes that transform data

Film “resource” starts as a simple object (POJO),
later transitions to ORM model

class Film extends Model {
 static get tableName() }
 return 'Film';
 }
 ...
 static get relationMappings() {
 ...
 }
}

Film table in database

ORM is a design pattern for mapping
database schema to object

The schema alone, i.e., type, is insufficient to enforce the range. So here we leverage
the ORMs additional validation tools. This is an example of where AOP can be useful,
as these validations should be and are enforced everywhere a model is
created/modified, i.e., we want to implement that cross-cutting concern once, not
repeatedly…

Note that any constraint could be implemented in this way (not just range).

27

4/8/25

Validation (recall aspects & AOP)
Mechanisms for validating model data?
• Schema itself (unique, not null, etc.)
• Requirements specified in ORM model

Film.query().patchAndFetchById(…, { rating: 10 })

properties: {
 ...
 rating: {
 type: ['integer', 'null’],
 minimum: 0,
 maximum: 5
 },
}

Film.fromJson

throw ValidationError

400 Bad Request

Model Schema

Answer: C

No specific code should be required in the route handlers. A validation error should
result in a rejected Promise, that rejected promise could be detected by the NextJS
invoke the error handling middleware.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

28

4/8/25

“When invalid movie data is sent in a request,
then the requester should receive a '400 Bad
Request' response”. Which of the below, if any,
is NOT required to implement this scenario in a
DRY manner?

A. Model validations
B. NextJS/next-connect middleware
C. Code in one or more NextJS API handlers
D. All the above elements are required

When you were looking through the in-class backlog, you likely saw these CRC cards.
Let’s turn this high-level representation into a design for a relational database. We
will start by translating the knows/collaborators into the formal associations.
• What are the relationships between Room and Poll? One-to-many, i.e., a room has

many polls, but a poll belongs to a single room.
• What about relationship between Room and User? This is a many-to-relationship,

as each room has many users and a user could be a member (student or
instructor) of many rooms (i.e., of many classes). That implies the need for a join
table that connects these two. Further in this case we will likely want to encode
additional information about this relationship, e.g., is the user a student or an
instructor. Let’s call that join Model, Roster, Thus we would express this as a many-
to-many through Roster.

Roster	
Knows user	User
Knows room	Room
Knows role { student, …}	

29

“in-class” data model

Room
Responsibility Collaborator
Knows name
Knows polls Poll

Knows members User

Poll
Responsibility Collaborator
Knows start & end
Knows results
Knows room Room

User
Responsibility Collaborator
Knows e-mail, etc.
Knows rooms Room
…

30

“in-class” data model

Room
Responsibility Collaborator
Knows name
Knows polls Poll

Knows members User

Poll
Responsibility Collaborator
Knows start & end
Knows results
Knows room Room

User
Responsibility Collaborator
Knows e-mail, etc.
Knows rooms Room
…

Roster
Responsibility Collaborator
Knows user User
Knows room Room
Knows role (student, …)

“one-to-many”
“many-to-many”

What are some things that you now notice (especially as it relates to the associations
we just defined)?
• Recall that in a one-to-many relationship the foreign key goes in the “many” side

(so our records are of a fixed size). We see that here, the `roomId` is an integer
that references the id in Room (recall foreign keys are a constraint, not a type).
Further, we specify that polls should be deleted if the room is…

• The other attributes you see, e.g., values, created_at, and ended_at, correspond to
the knows in the CRC card (the values and the start/end times).

• They have specific types (doing so helps with performance, validation, etc. ”ouf-of-
the-box”). We want to look first to specialized types that might be relevant to our
attributes before defaulting to something like string, text etc.

https://github.com/csci312-common-v2/class-
interactor/blob/main/src/knex/migrations/20230116140145_rooms.ts

4/8/25

31

Example schema

`

knex.schema
 .createTable("Room", (table) => {
 table.increments("id").primary();
 table.uuid("visibleId").unique().notNullable();
 table.string("name").notNullable();
 })
 .createTable("Poll", (table) => {
 table.increments("id").primary();
 table
 .integer("roomId")
 .references("id")
 .inTable("Room")
 .notNullable()
 .onDelete("cascade");
 // or table.foreign("roomId").references("Room.id")…
 table.jsonb("values");
 table.timestamp("created_at").defaultTo(knex.fn.now());
 table.timestamp("ended_at");
 });

We would need to create the User table. Does the model schema have any references
to Room, etc.? No. That is all contained within the Roster join table…
What does the Roster table need? roomId and userId columns that foreign keys
(linked the to the ids in those respective tables), and an additional column that stores
the role for this individual (here is an enumerated value, i.e., it can only take on
certain values, e.g., someone who can administer the room and someone or is a
participant (e.g., maybe they can only view, not control/administer a room).

If we assume a user and room can only have one relationship, then the combination
of userId and roomId will be unique and could be used as a composite primary key

return knex.schema.createTable("User", (table) => {
table.increments("id").primary();
table.string("googleId");
table.string("name");
table.text("email");
})
.createTable("Roster", (table) => {
table.foreign("userId").references("User.id").notNullable
().onDelete(”CASCADE");
table.foreign("roomId").references("Room.id").notNullable
().onDelete(”CASCADE");

4/8/25

32

How would we design the User/Roster
tables?

table.enu("role", ["administrator", "student"], {
useNative: true, enumName: "roster_role_type"
}).notNullable();
table.primary(['userId', 'roomId']);
});

4/8/25

32

4/8/25

33

How would we design the User/Roster
tables?

id name email googleId
int string text string
1 Michael … mlinderman… 12345678
2 Christopher … candrews… 87654321
3 Laura … lbiester… 21436587

userId roomId role
int int enum
1 1 “administrator”
2 2 “administrator”
3 3 “administrator”

Room table

Foreign Keys and Primary Key

// When fetching users make sure to include "role" from the
join table

4/8/25

34

How would we use this association?
// relation mapping in objection.js Room model
users: {
 relation: Model.ManyToManyRelation,
 modelClass: User,
 join: {
 from: "Room.id",
 through: {
 from: "Roster.roomId",
 to: "Roster.userId",
 // Ensure role is included
 // from the join table
 extra: ["role"]
 },
 to: "User.id",
 }
}

Room
 .query()
 .where(…)
 .withGraphFetched("users");

[Room {
 id: 1,
 visibleId: …,
 name: 'TestClass',
 users: [User {
 id: 1,
 name: …,
 role: "administrator",
 }]
}]

Model relation enables
concise query…

Which produces…

