
Waterfall: Sequential phases of project (like a cascading waterfall).

In contrast Agile, implements multiple iterations of those lifecycles in short repeated
cycles. Embraces change as a fact of life: continuous improvement instead of a single
planning planning phase. Team continuously improves working but incomplete
prototype until customer satisfied (with customer feedback on at each 1-2 week
iteration).

Note that when we talk about agile, we are talking as a project management
“philosophy” (like P&D is a description of more than just Waterfall). Scrum, Extreme
Programming (XP) are specific methodologies guided by the Agile philosophy.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

1

Recall: Plan & Document ⇒ Agile

Dilbert 11/26/17

Requirements

Design

Development

Testing

Operations

Waterfall process:
Sequential phases

Agile: All lifecycle phases
in repeated short cycles

What are some other examples of these values in practice, specifically “Working
software over comprehensive documentation”?

• PropTypes are working software instead of documentation
• The Given-When-Then tests document scenarios and serve as tests

http://agilemanifesto.org

2

Recall: Agile Manifesto (2001)

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.

http://agilemanifesto.org

http://agilemanifesto.org/

Unfortuntely agile has become a brand, i.e., "capital A" agile. We want to focus on
"lower case a" agility. To that end …

A good rule of thumb, when faced …

Adapted from Dave Thomas (https://www.youtube.com/watch?v=a-BOSpxYJ9M)

3

Agile vs. agility

1. Find out where you are,
2. Take a small step towards your goal,
3. Adjust your understanding based on what

you learned, and
4. Repeat
When faced with two or more alternatives that
deliver roughly the same value, choose the path
that makes future change easier

https://www.youtube.com/watch?v=a-BOSpxYJ9M

• Incrementing calls for a fully formed idea that is built a bit at a time and thus
requires having a fully formed idea.

• Iterating allows you to move from vague idea to realization, i.e., “iterating” builds a
rough version, validates it, then slowly builds up quality/capabilities. The catch is
we are addressing the entire problem at one time, i.e., we are working on the
entire image. This is both challenging and has the risk that we end up with
everything partially completed.

4

Do you want to increment or iterate?

Incremental

Iterative

https://jpattonassociates.com/dont_know_what_i_want/

Here we work both ways, that is in increments, but some of each increment is an
iterative improvements to existing functionality.

“The sprint adds completely new features, based on user stories, hence expanding
the scope of the functionality offered – that makes it Incremental. But each
Increment is also likely to refine existing functionality – that makes it iterative.”

What do we get if we stop at each step … ?

1. Realized it isn’t a good idea. Stop there.
2. Have our top functionality!
3. Started to complete 2nd tier priorities…

What is the catch? There is big jump before step 1 (where we are setting up the
outlines of the image). Like the iterative approach we are tackling the project as a
whole at once. It takes experience to make decisions at this phase that set you up for
success later. That is to have that general sense of what you will need to go in the
future and make decisions today in anticipation of those needs. For example, I don’t
have a server yet, but I know how the data will likely be structured and so can design
from my front-end accordingly. One goal of the project is to help use develop that
experience.

5

Iterative Incremental

http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-lisa

"Each Sprint has a definition of what is to be built, a design and flexible plan that will
guide building it, the work, and the resultant product."

Sprint planning: A time-boxed planning meeting to determine
* Which features will be delivered in the upcoming sprint, and
* Decide how this work will get done (i.e., design the system, define specific work
items, breaking up any larger tasks).

Daily Scrum: A daily standing meeting of no more than 15 minutes. Each person
briefly describes
* What they did since yesterday to help the team meet the Sprint Goal
* What they plan to do today
* Any impediments that will prevent the team from meeting the Sprint Goal
The goal is efficient communication, quick decision making and quick resolution of
any impediments.

Sprint Demo: A meeting at the end of the iteration to demo the new release (and
there should be a new release). Team only demos ”done” features.

Sprint Retrospective: A meeting to reflect about Sprint itself
* Identify things that worked and things that didn’t
* Make a plan for how to make the next sprint work better

6

Scrum (in a nutshell)

Feature

Feature

Feature

Feature

Product Backlog

Sprint Goal Feature

Feature

”Deployable”
product
increment

Sprint (2-4 weeks)Sprint
Backlog

24 hours between
”standup” meetings

Sprint Planning

Sprint Demo &
Retrospective

Frequent feedback!

* Pay particular attention to the sprint velocity (rate at which work is accomplished).
As we will discuss the goal is constant velocity.

Adapted from Mountain Goat Software
https://www.mountaingoatsoftware.com/uploads/presentations/Getting-Agile-With-
Scrum-Norwegian-Developers-Conference-2014.pdf

6

If you have an external customer, I suggest selecting one person to the product owner
and the point person for interacting with the customer.

The scrum facilitator is more traditionally called the “Scrum Master”. The original
intent was that person had mastered the Scrum process, not that they were in charge
somehow. Since that is a loaded term and not actually a good descriptor of that role,
we will call that person the “Scrum Facilitator”.

7

Scrum team

Development Team
• Self-organizing
• Cross-functional
• No hierarchy of specific titles
• A single team without sub-teams
• Accountable as a group

Product Owner
• Represents the customer
• Responsible for prioritizing

the product backlog

Scrum Facilitator
• Servant-leader for team
• Facilitate SCRUM process

Critical!!

Setting the Sprint Goal (populating the sprint backlog) is a function of the Product
Backlog (that is the set of features to build), the current state the application and the
capacity and past performance of the Development Team. That is, you want to set a
realistic goal based on past and predicted development velocity.

By using the spring backlog and its items (and those alone) you should know the next
most important task to work on. To that end, you need to know the priority order,
what tasks others are already working on, how much work they might be taking on,
and what to do to complete that task/user story. One of my most common pieces of
feedback is to make better use of the backlog and backlog items to organize and
coordinate your work.

8

Scrum artifacts: Product backlog

• A prioritized list of user stories (and
other tasks) maintained by the
product owner

• Evolves as you learn more (stories are
added, removed, re-prioritized)

• A subset of stories are chosen for each
sprint (Spring Backlog)

• Should be readily accessible to
everyone on the team (and me!)

Feature

Feature

Feature

Feature

Product Backlog

Tool: GitHub Projects (although there many others)

Feature

Feature

Sprint Backlog

Not all work items may be user stories. Some work-items will be bugs, Sometimes a
task is necessary but far removed from the user, e.g., read an arbitrary byte range
from a local or remote file.

As a reminder, user stories drive the design and user stories
should have a stakeholder and a motivation. These
interact in the prioritization process of the backlog.
For example, consider user login, which is likely a
common feature across many applications. Why do users
need to log in? Is it because the system stores private
data for them? Or because there are privileged functions
(like administration)? Or do just need a way to
distinguish users over short periods of time. If there
isn’t a justification, don’t add it. This goes for every
one of the features you are contemplating. There should
be a user story that describes every feature, who it will
be built to support and why they need it.

9

Recall: Epics, User stories, Scenarios

Epic

User Stories

Scenarios

has many

has many

As a <stakeholder>
I want to do <something>
so that <result or benefit>.

Given <a context>,
when <an event happens>,
then <an outcome should occur>.

You will often see Fibonacci schemes… Why? What is the difference between 5-6
(within error bounds)? "Studies have shown that we are best at estimating things
that fall within one order of magnitude (Miranda 2001; Saaty 1996)”

What if I don’t know how to approach a given user story? Should I just give it 4
points? User stories should not be so complex that you don’t know how to approach
implementing it. Recall an INVESTable story is Estimable. If your story is not
estimable, you may need a spike, or to refactor/decompose it into a more
approachable form.

Why constant velocity? That means are working in a predictable and sustainable way!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10

Effort estimation and velocity

• Not all stories count equally, need to know
how much work we are taking on

• Assign each story (and bug) points
Recommend: 1, 2, 4, 8 (8 is rare and should be split)
Vote independently, high/low explain their vote
Iterate until convergence OR take high vote

• Aim for constant velocity
velocity := points per week

Answer: D

Since each team assigns points to user stories, you cannot use velocity to compare
different teams. However, you could look over time for a given team to see if there
were some iterations that were significantly less or more productive.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

11

For last 3 iterations, Team Blue’s
(#003F84) average velocity is 8, Team
White’s is 4. Which, if any, of the
following comparisons between the
Blue and White teams is valid?

A. Blue has more developers than White
B. Blue is twice as productive as White
C. Blue has completed more stories than White
D. None of the above

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

12

Student Advice: Scrum/Stand-ups

• “5-minute daily standups really helped us stay
on track, and share knowledge when stuck”

• “Biggest challenge for us was team
communication/coordination”

• “Have a scrum leader each time, rotate the
position”

• “1 meeting per week isn’t enough”

Adapted from Berkeley CS169

13

Adapting Scrum for CS312

Scheduling a daily scrum with entire team will
be impractical

We will use class time instead
Thus only 2 “daily” scrums

Only 2 meetings per week won’t be enough
Arrange more frequent communication (e.g., Slack)
to make your project a success!

Driver is thinking short term, Observer long term…

Why would a company do this?
What do you think the overhead of PP is (total developer time for PP vs. solo)? 100%?
Or…

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

14

Pair programming

• Driver types and thinks tactically about
current task, explaining thoughts while typing

• Observer reviews each line of code as typed,
and acts as safety net for the driver

• Observer thinking strategically about future
problems, makes suggestions to driver

Should be lots of talking and concentration
Frequently switch roles

https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF

I encourage “promiscuous pairing”, regularly swapping partners so that eventually
everyone is paired

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

15

Pair programming evaluation

• Small increase in developer time (15%)
• Decrease in defects, i.e., higher quality
• Transfers knowledge between pair

Programming idioms, tool tricks, company
processes, latest technologies, …

• Programmers often report increased job
satisfaction

Williams et al. IEEE Software, 2000

https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF

Adapted from Dan North
Dreyfus model of learning: https://www.youtube.com/watch?v=lvs7VEsQzKY&t=312s

16

Thinking about pairing: Dreyfus
squared for skills

Novice
Adv.
Beginner Competent Proficient Expert

Novice ✔ ✘
Adv. Beginner Crazy learning!

Competent

Proficient ✔

Expert

Novice: Needs rules
Advanced Beginner: Tests the rules
Competent: Applies rules
Proficient: Falls back on rules
Expert: Transcends rules

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

17

Student Advice: Pair programming

• “Helped avoid silly mistakes that could take a
long time to debug”

• “Changing partners frequently made team
more cohesive”

Adapted from Berkeley CS169

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

18

Resolving conflicts (e.g., different
views on the technical direction)

1. Remember there is no “winning”, most questions don’t have
“right answers” just tradeoffs

2. List all items on which you agree
Instead of starting with a list of disagreements
Maybe you agree more than you realize

3. Articulate the other side’s argument, even though you don’t agree
Avoids confusions about terms or assumptions (often the root cause of
the conflict)

4. Constructive confrontation (Intel)
If you have a strong opinion that a proposal is technically wrong, you are
obligated to speak up and seek a conclusion

5. Disagree and commit (Intel)
Once a decision is made, embrace it and move ahead

See also: K Matsudaira, Resolving Conflict. Don’t “win.” Resolve. ACM Queue 14(5) 2016

https://queue.acm.org/detail.cfm?id=3017847

Opening PR means expecting other team members to review and comment on those
changes, even if review is just to say, “Looks good to me” (LGTM). Depending on
review outcome, PR may be merged, closed (withdrawn) or revised before merge.

Code review can be very effective. The detection rate for defects in code review is 55-
60%! https://blog.codinghorror.com/code-reviews-just-do-it/ But for it to be
meaningful the code needs be to be reviewable. A PR that changes thousands of lines
across 10s of files? Difficult to review. That is another motivation to keep user stories
Small (the S in INVEST). Aim for more smaller merges than fewer large and far-
reaching merges.

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-
of-code-in-a-single-repository/fulltext

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

19

Agile and code reviews
• Pair programming is a continuous review

PP @ Pivotal Labs ⇒ No special review
• Pull Requests as a review

1. Requests to integrate code
2. Team sees each PR and determine how PR might

affect own code
3. Comment on concerns (or just “LGTM”)
4. Since occurs daily, “mini-reviews” continuously

At Google, no commit to trunk (main) without review

TL;DR; Be humble, assume the best of intentions, ask don’t demand. Recall the goal is
to make your team better, diminishing your teammates is counter to that goal.

A helpful guide: https://github.com/thoughtbot/guides/tree/master/code-review
1. Accept that many programming decisions are opinions. Discuss tradeoffs, which

you prefer, and reach a resolution quickly.
2. Ask good questions; don't make demands. ("What do you think about naming

this :user_id?")
3. Good questions avoid judgment and avoid assumptions about the author's

perspective.
4. Ask for clarification. ("I didn't understand. Can you clarify?")
5. Avoid selective ownership of code. ("mine", "not mine", "yours")
6. Avoid using terms that could be seen as referring to personal traits. ("dumb",

"stupid"). Assume everyone is intelligent and well-meaning.
7. Be explicit. Remember people don't always understand your intentions online.
8. Be humble. ("I'm not sure - let's look it up.")
9. Don't use hyperbole. ("always", "never", "endlessly", "nothing")
10. Don't use sarcasm.

20

What are we looking for as the
reviewer?

• !Formatting (ESLint’s/Prettier’s job)
• Leaky abstractions (forcing my implementation

on my users, not building for change)
• Tactical programming (or signs complexity is

winning)
– Duplicated code (simples changes would require

modifications in many places)
– Overly complex code, including not using

language/library features
– Hard to understand what is going

• Insufficient tests, e.g., missing corner cases

A specific anti-pattern for our projects is having one person own a specific layer/tier,
e.g., the backend, the database, etc. And only they can/do make changes. Instead,
aim to spread that knowledge around. If you create the first instance of something,
e.g., setup the database, make that initial implementation an example for how others
would extend that code with their own features. Recall our goal is to have teammates
working on features, in their entirety, in parallel instead of working on the front and
back-end in parallel.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

Commandments for being a bad SW team player
(and some alternatives)

1. Those fails don’t matter
2. My branches, my sanctuary
3. It’s just a simple change
4. I am a special snowflake
5. Cleverness is impressive
6. Just change it quickly on the

production server
7. Time spent looking stuff up

is wasted time (not coding)
8. “Green fever”: Catch it!
9. Weeks of coding can save

hours of planning & thought
10. When blocked, I am stuck

1. Never push failing tests
2. Have short-lived branches by

integrating frequently
3. Test everything
4. One coding style
5. Transparency is humble
6. Make every change

automatable
7. Spend 5 minutes searching

for less or better code
8. More tests ≠ higher quality
9. Work through your design
10. I unblock myself, or move on

to the next task

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

22

Organize and centralize your work

• React has a single source of truth, so should your
project
One central source repository
One central source of project information, your GitHub
Project (instead of random Google Docs, etc.)

• Maintain self-contained dev. environment
Check-in Actions, database schema, etc.
Use package.json scripts to launch dev, tests, etc. with
single shared command

Some of these may be a bit extreme in practice, but the larger message is to not
abandon good processes in pursuit of short-term progress.

23

Don’t build up technical debt!

• It is OK to require changes to a PR
• Any branch with lifetime > 3 days is killed
• Any merge that breaks the build is killed, and

culprit must merge the master into their
branch

• Any bug fix or new code submitted without
sufficient test coverage is rejected

