
1

Deployment: Closing the loop

Programs that are never deployed have not 
fulfilled their purpose. We must deploy!
To do so we must answer:
• Is our application in a working state?
• Do we have the necessary HW/SW resources?
• How do we actually get our code, etc. onto a 

server accessible by others?



Answer: True

From the Google SRE handbook: "At their core, the development teams want to 
launch new features and see them adopted by users. At their core, the ops teams 
want to make sure the service doesn’t break while they are holding the pager [i.e., on 
call]. Because most outages are caused by some kind of change—a new 
configuration, a new feature launch, or a new type of user traffic—the two teams’ 
goals are fundamentally in tension."

This is an instance of a broader issue. Often the "safest" course of action is no action 
at all. Accomplishing something requires some risk. Our goal is to create processes 
and teams that will take on and successfully manage those risks.

2

3/12/25

True or False? The development 
team's goal of launching new features 
conflicts with the operations team's 
goal of ensuring services stay live and 
usable.
A. True
B. False



As a practical matter, the trend towards DevOps means that as the application 
developer you are responsible for more of the traditional ”operations” tasks 
(provisioning machines, deploying, etc.) while ”operations” teams are increasingly 
automating operational tasks to support frequent deployment, fault tolerance, and 
more.

Definition sourced from: https://landing.google.com/sre/book

3

3/12/25

DevOps principles

• Involve operations in each phase of a system’s 
design and development

• Heavy reliance on automation versus human 
effort

• The application of engineering practices and 
tools to operations tasks



One of those practices is Continuous Integration (CI). CI emphasizes frequent 
integrations (hence the name). The main ideas are… <clicks>

There are lot of different terminology in this space, not all of it consistently or clearly 
defined. Terms may not translate. "Everyone integrates frequently" is sometimes 
described as "trunk-based development". We contrast this approach with workflows 
with long-lived branches (maybe tied to a specific release, or a major feature), 
perhaps with rules for who can merge code between branches.

4

Continuous Integration (CI): Ensuring 
our application is in a working state

• Maintain a single repository
With always deployable branch

• Automate the Build (Build is a proper noun)
And fix broken builds ASAP

• The Build should be self testing
• Everyone integrates with main frequently

Small “deltas” facilitate integration and minimize bug 
surface area

• Automate deployment
Practice “DevOps” culture

Martin Fowler “Key practices of Continuous Integration”

https://martinfowler.com/articles/continuousIntegration.html


We rigorously and automatically test each integration. We will use GitHub actions for 
this purpose. At a minimum it prevents the dreaded “but it worked on my machine”. 
The integration testing typically goes beyond the testing each developer is doing on 
their own code to include multiple browsers, stress tests, etc. Once that integration is 
complete, we are ready to deploy!

There are two related concepts:
* Continuous Deployment: Every change automatically gets put into production, and 
thus there are many production deployments each day.
* Continuous Delivery: An (small) extension of CI in which SW is deployable 
throughout its lifecycle, the team prioritizes keeping SW deployable, and it is possible 
to automatically deploy SW on demand.

https://martinfowler.com/bliki/ContinuousDelivery.html

In our project, we will be aiming for a Continuous Delivery-like workflow in which our 
applications start and stay deployable throughout the development process. As with 
CI, this reduces the complexity (and risk) of deployment by enabling us to do so in 
small increments. And Continuous Delivery facilitates getting user feedback by 
frequently getting working SW in front of real users. Although to mitigate risk 
companies will often first deploy for a small subset of users.

5

3/12/25

CI, CD and more
CI rigorously tests every integration in 
production-like environment
• Prevent development-production 

mismatch
• Test multiple browsers, etc.
• “Stress test” code for performance, 

fault-tolerance, etc.
Then we deploy!

Continuous 
Integration

Continuous
Deployment

Continuous
Delivery

Deploy every integration

Deploy on demand

By deploying frequently, we make 
what was rare and fraught common 
and unremarkable!



At the beginning of the course, we handed you git and said use this, but only briefly 
talked about why… I thought this definition from GitLab nicely captures the 
motivations. Version control systems (VCS):
• Protects our source code from irreparable loss
• Make us more comfortable making changes
• And increasingly serves as infrastructure for collaboration, testing, and 

deployment. For example, we will use git to facilitate deployment of our 
application.

That you use a VCS is more important than what you use. Git is not the only choice, 
and not all companies use Git (Google most famously). That said it is very widely 
used, partly driven by the use and adoption of GitHub.

Git was originally developed to support the distributed development model used for 
the Linux kernel and its design reflects that need. As a reminder Git is a distributed 
VCS. Each repository “stands alone” and changes are not automatically propagated 
between repositories. Instead, we need to explicitly communicate changes. 

6

Why version control?

“Version control (or source control or revision 
control) serves as a safety net to protect the 
source code from irreparable harm, giving the 
development team the freedom to experiment 
without fear of causing damage or creating code 
conflicts.”

-GitLab



There are many Git workflows. We will adopt a “feature branch” workflow that suits 
our kind of project(s) and infrastructure. In this model…

We are taking of advantage that in Git, branching is ”cheap”, i.e., it is easy for us 
create a branch from the current state of the codebase that allows us to isolate 
changes (from each other, from the current deployable version of the application, 
etc.) until we are ready to integrate. By creating a new branch, the main branch 
remains unchanged, and thus in its deployable state, until the new feature is ready 
and deployable.

A note about Git branch naming. The “main” branch used to be named “master” (and 
is still by default). That naming is no longer used as it is a charged term 
(https://www.acm.org/diversity-inclusion/words-matter) that does not reflect the 
relationship between branches. We will use “main” (although you will still see 
”master” in some projects and documentation).

[at end]
A key attribute is “short lived”. This workflow is most effective when branches only 
live for a brief period (as opposed to days or weeks) and most feature development 
can start from main, as opposed to another feature branch.

https://www.atlassian.com/git/tutorials/using-branches

7

Git workflow for CI

• Branching is cheap in Git
• We will use branches to isolate changes until 

integration
• The “main” branch remains deployable

Main is always “deployable”
• Tests pass
• No incomplete features

Short-lived branch for 
single feature



To this end checkout the links on the course page with various cheat sheets of the 
common commands. As with many things we will only scratch the surface of git. Like 
any complex tool, the best way to learn is not to bite it all off at once but try to 
continually learn new techniques/tricks as you go and encounter new situations. It is 
OK to just use same handful of commands (that is what I do!)

8

https://xkcd.com/1597/



Steps:
1. Create branch with `git checkout –b <branch name>`. Any subsequent changes 

will be isolated from main (we could switch back to the main branch point at any 
time)

2. Make one or more commits on our feature branch
3. When we are ready (e.g., tests pass), merge those changes back into main. 

The main branch now looks like the picture at right, i.e., it has all of the commits, 
including those originally made on the feature branch…

I encourage you to work this way, even if you are working totally alone (i.e., no team, 
no GitHub), that is the ability to maintain history and isolate changes is valuable, even 
if you are working by yourself. And it is that much more valuable when working with a 
team, implementing DevOps processes, etc.

9

Git “solo” branching workflows

main

git checkout –b feature

feature

git checkout main
git merge feature

git commit –m "…"
...

Make sure 
tests pass



Let’s add CI into the mix… Now we push our feature branch to GitHub and use its 
tools, specifically a pull request or PR, to implement the merge.

We use the PR to get other set(s) of eyes, both automated and human, on our 
changes. When we create the PR, which is exactly what its name suggests, a request 
to merge one branch into another, we can configure GitHub to test the code and 
especially test the eventual result of the merge. Often, we incorporate a similar 
human check, that is a team member(s) must review our code before merge. If 
everything looks good, we perform the merge on GH. Note that because git is 
distributed, merging the PR on GH doesn’t change our local repository. We must pull 
the change. Adding the `--prune` option to pull, cleans up references to remote 
branches that no longer exist on the remote repository (e.g., the feature branch we 
deleted after the merge) and the `branch –d` deletes the local copy of now irrelevant 
feature branch.

What happens when you need to make changes to your PR after you have created it? 
You can make additional commits and push to the remote feature branch (i.e., push 
the feature branch in GH). New commits will automatically be added to PR.

10

Git/GitHub workflow with CI

Github

Alice
git branch –d feature

git push origin feature

PR
CI server tests branch and merged code

Merge PR and delete feature branch

git checkout main
git pull --prune



Answer: C

(A) will rewrite shared history; (B) is not necessarily true; (C) this error is created 
when there are changes to the remote branch that haven't been fetched to the local 
repository.

11

You try to push to a remote branch 
and get a “(non-fast-forward) 
error: failed to push some refs […]" 
message. What should you do?
A. Use "--force" argument to force Git to complete 

the push
B. You must still have merge conflicts. Manually fix 

those conflicts then push.
C. There have been intervening commits to remote 

branch. Pull then push again.



Let’s imagine that since you created your branch, your teammate has integrated a 
new feature of their own. Now main on GH has commits that you don’t have. Our 
first step is to get any new commits to main, bringing our local branches up to date 
with GH. We then need to combine the two sets of changes.

In the ideal case, your feature branch will merge with main cleanly without any 
conflicts (basically, the changes in the feature can be applied directly and 
automatically without overwriting anything that has happened to main since the 
feature branched off). What if not? We will need to resolve any conflicts manually, 
that is tell git what the result of the combined branches should look like. We will talk 
more about this in a moment.

Here we use rebase instead of the merge command we saw previously. From 
the picture, what does rebase do? Apply Alice’s changes “after” previous 
changes, thus making it appear the branch was created _after_ the most 
recent changes. Some teams will prefer this approach as it makes the history 
appear more linear than it was practice (when you look at the sequence of 
commits). Rebasing is optional and can be fraught (stay tuned). We can also 
just use merge in this situation.

At this point we are back to our previous situation and are ready to complete 
the PR process.

12

Git is distributed, staying up to date

Github

Alice

git checkout main
git pull origin main

git checkout feature
git rebase main

git push origin feature

PR



"Remote-tracking branches [like origin/master] are references to the state of 
remote branches. They’re local references that you can’t move; Git moves 
them for you whenever you do fetch (explicit communication), to make sure 
they accurately represent the state of the remote repository."

"Checking out a local branch from a remote-tracking branch automatically 
creates what is called a “tracking branch” (and the branch it tracks is called an 
“upstream branch”). Tracking branches are local branches that have a direct 
relationship to a remote branch. If you’re on a tracking branch and type git pull, 
Git automatically knows which server to fetch from and which branch to merge 
in." Unlike remote-tracking branches, these are branches that can change.
• These branches are typically created with `git checkout -t remote-tracking 

branch`, e.g., `git checkout -t origin/feature`. That command is typically used 
to start working on a branch created by someone else on the remote 
repository.

• When you use `git push -u` that is also creating one of these links
• If you look closely as this example, this state resulted from `git fetch`. That 

command is used to update the remote-tracking branches alone. It didn't 
change any local branches. `git merge`/`git rebase` and `git pull` (which 
combined `git fetch` and `git merge`/`git rebase`) is needed to update the 
local branches. 

13

git branch vocabulary

remote-tracking 
branch

"local" tracking 
branch local 

branch

branches in remote 
repository

https://onlywei.github.io/explain-git-with-d3



Notice that since our last sync with the remote origin repository we have added new 
commits on the `my-branch` feature branch and someone else has also pushed new 
commits to origin,

git checkout master
git pull origin master

git checkout my-branch
git merge master

This is an example where we performed a merge of commits to main (master) pushed 
to main since we created our feature branch. Unlike our previous example where we 
used `rebase` to make it appear as though we created out branch after the new 
commits, here we use merge. Notice that creates a “merge commit” that shows how 
those to independent histories should be combined.

I encourage you to play with this tool to explore different Git scenarios.

https://onlywei.github.io/explain-git-with-d3/#fetchrebase

14

Trying out git: Visualizing branches

https://onlywei.github.io/explain-git-with-d3



15

The golden rule of rebase (and any re-
writing of history)

• Never modify public history (commits)
If anyone else could see this feature branch (e.g., 
you pushed to GitHub), don’t use rebase, --force, or 
any command that alters history

• When in doubt it is OK to just merge



Assume we have tried to merge main into our feature branch (or rebase our branch 
with main) to bring it up-to-date in anticipation of pushing our feature branch to 
GitHub (and creating a pull request). But we get conflicts. Git will put us in a “half-
way” state where we can fix the merge conflicts. What do we mean by fixing the 
conflicts? You must choose between the code on your branch and the code on the 
branch your merging, or some combination thereof. Git marks these with the angle 
brackets and the equals signs (it may also include code from the nearest common 
ancestor). Let’s assume you wanted the code from your branch. You would delete the 
angles and equals, and keep just the code you wanted, e.g.

“this is conflicted text from feature branch”

Often though you will need to integrate the two, e.g., you will edit the above section 
to be:

“this is conflicted text from feature branch and main”

One you have resolved all these conflicts (and made sure your tests pass!), you can 
complete the merge by adding all the files you modified (git add …) and committing 
(git commit …). This create the merge commit that shows git how to combine these 
branches. As a result, when you create your pull request Git will know how to 
automatically merge your feature branch onto master. That is the merge is not 

16

Conflicts happen: Merge commits
On branch feature
Unmerged paths: (use "git add/rm ..." as appropriate to mark 
resolution)
both modified: App.js

here is some content not affected by the conflict
<<<<<<< HEAD
this is conflicted text from feature branch
=======
this is conflicted text from main
>>>>>>> main

Git identifies the conflicts:

Fix all conflicts then add updated files and commit to complete 
the merge



complete until you create that new commit. A common mistake is to start the merge 
and forget that you are in the halfway state and continue on with your feature work. 
While git is fine with that, it will be confusing to anyone trying to follow the history, 
as the merge commit is now both a resolution to the merge conflicts _and_ new 
code.

You would follow a similar process if rebasing, i.e., creating a commit with all merge 
conflicts resolved, but then you also need to run git rebase --continue

Check out for more details: https://www.atlassian.com/git/tutorials/using-
branches/merge-conflicts

Create a merge conflict.

mkdir git-merge-test 
cd git-merge-test 
git init . 
echo "this is some content to mess with" > merge.txt 
git add merge.txt 
git commit -am "we are commiting the inital content”

git checkout -b feature
echo "totally different content to merge later" > merge.t
xt 
git commit -am 
"edited the content of merge.txt to cause a conflict”

git checkout main
echo "content to append" >> merge.txt 
git commit -am"appended content to merge.txt”

$ git merge feature

Hint: you probably want the default commit message for the merge. You can use git 
commit –no-edit to use the message without any changes. If you just use git commit, 
you’ll probably end up in vim. To get out of vim and save the current commit 
message, type ”:wq” and hit “enter”.

16



Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

18

Student advice: Branch-per-feature

• “Aggressive branch-per-feature minimized 
merge conflicts”

• “With this many people you NEED branch-per-
feature to avoid stepping on each other”

Adapted from Berkeley CS169

Our goal is to work efficiently as a project team. 
Practice now the processes you will need in your 
project!



Answer: A

Again, from the Google SRE handbook: "An ideally managed and designed service can 
grow by at least one order of magnitude with zero additional work, other than some 
one-time efforts to add resources." To do so, one needs highly automatic systems.

Automation (and engineering practices) are what enables that constant effort scaling. 
Automation goes beyond just provisioning resources, it is also techniques like 
automatically rolling out changes to a small fraction of users, detecting errors 
(through monitoring) and then automatically rolling back the changes!

Although DevOps is an approach not a task (it is about integrating operations tasks 
into development) and thus not necessarily a distinct job, the role of site reliability 
engineer (SRE) is close to DevOps as a job. Popularized by Google, SREs are engineers 
who focus on running products and "create systems to accomplish the work that 
would otherwise be performed, often manually, by sysadmins."

19

The operational work involved in 
supporting a service should 
realistically scale how as the service 
grows by 10X?
A. O(1): Just one-time efforts to add resources
B. Sublinear: There will be additional work 

required as a function of service size
C. O(n): The effort will have to grow linearly with 

demand
D. Greater than O(n): Increasing scale means 

increasing complexity



As described previously the 3-tier architecture is a design pattern for building web 
applications. Recall that a design pattern is a “template” for the aspects of a solution 
that are the same every time. We can often factor out those common elements into a 
library or service. Platform-as-a-Service (PaaS) offerings factor out the common 
elements of that architecture into a service that helps us achieve the scaling we just 
described. For example, the Heroku PaaS provides the “presentation tier”, the 
“persistence tier” and the portions of the “logic tier” that wrap around your specific 
application.

This semester we are going to be using a cloud-based in-house PaaS, csci312.dev, and 
commercial databases-as-a-service offerings to deploy our applications. Like Heroku, 
with csci312.dev, we push our code to the service via git. The service then builds and 
automatically deploys our application. Why did we roll our own? It wasn’t by choice … 
we would like to be able to use commercial services such as Heroku, fly.io, etc.. Those 
services often have free tiers that out more than adequate for our needs, except they 
require a credit card for identity verification (I didn’t want anything in class to depend 
on a credit card) and often have limits on the size of teams that are prohibitive for us 
(30 developers looks like large company, with attendant large-company pricing). 
Fortunately for any personal projects where those constraints are less of a concern, 
you have many more options!

Automation is not just the province of large applications/companies. *aaS and the 

20

Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache, 

nginx)

App. Server
(e.g.NodeJS)

Database
(e.g. SQLite, 
PostgreSQL)

Routing & 
Controllers

(e.g. NextJS 
Express)

Models
(e.g.knex, 
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

*aaS (e.g., PaaS) “factor out” the common needs

nginx on 
csci312.dev

PostgreSQL 
on neon.tech

csci312.dev



cloud has eliminated most or all physicality from the operations process but also 
change the dynamic from provisioning (and decommissioning) resources, e.g., 
servers, infrequently to doing so frequently, thus forcing automation even by 
otherwise small-scale users.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

20



Often projects will be setup to deploy directly from the shared repository, e.g. 
GitHub. We will not do so, although we could if we wanted to. In our approach a 
team member will deploy from their local repository, but they should only deploy the 
main branch as currently exists on GitHub. We model test this out, albeit solo, in our 
practical today. You will extend and then deploy an application, the color picker, to 
csci312.dev using the same processes as you will use for the project.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC 
license.

21

High-level project workflow

GitHub

Alice Bob

“Customer” Feedback

Pu
sh

 &
 PR

csci312.dev

GitHub Actions

Push


