
But particularly don’t do what customers want … (although these are likely related;
an application that is hard to maintain or evolve will be expensive and behind
schedule in evolving to meet customer needs/desires).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

1

Why do SW projects fail?

Failing projects:
• Don't do what customers want
• Are late
• Over budget
• Hard to maintain and evolve
• All the above
How do agile processes try to avoid failure?

Recall …

These short cycles provide frequent opportunities to check in with
stakeholders for validation. What is the difference between validation and
verification? Validation is “Did we build the right thing?”, verification is “Did we
build it right?”

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

2

Recall: agile lifecycle

• Work closely and continuously with
stakeholders to develop requirements, tests
Users, customers, developers, maintenance
programmers, operators, project managers, …

• Maintain a working prototype while deploying
new features every ~2 weeks

• Check in with stakeholders on what’s next,
to validate you’re building the right thing (vs.
verifying you built it right)

Recall we covered TDD in previous classes. TDD is the process of writing the tests
first. It is a technique for verification – “Did we build it right”. Today we will talk about
Behavior Driven Design or BDD. This is a process to help us elicit user requirements
and validate we are building the right thing.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

3

*DD in our Agile iterations

Talk to customer

Behavior Driven Design: User stories…

Test Driven Development (TDD)

Deploy

Design patterns

As it name suggests, BDD concentrate on what the application does as opposed to
how the application does it.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

4

Behavior-Driven Design (BDD)
• BDD is a conversation about app behavior before

and during development to reduce
miscommunication
Recall “Individuals and interactions over processes and
tools” in the Agile manifesto

• Requirements written down as user stories
Lightweight descriptions of how application is used

• BDD concentrates on behavior vs. implementation of
application
Test Driven Development (TDD) focuses on implementation

Why index cards?
• Nonthreatening: All stakeholders participate in brainstorming
• Easy to re-arrange: All stakeholders participate in prioritization
• Helps keep stories short and low-cost to change during development

<end> Why are all 3 parts needed? And why is the result/benefit part
particularly needed? That part captures the value of this feature and will be a
key piece of information for prioritizing our work. In the extreme, if we can't
articulate why this feature is valuable, then we shouldn't be building it!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

5

User Stories
• 1-3 sentences in everyday language

 Fits on an index card
 Written by or with the customer

• Often in “Connextra” format:
Feature name
As a [kind of stakeholder],
I want to [some task],
So that [some result or benefit].
(all 3 phrases are needed, but can be in any order)

User stories will ultimately become work items in our
product backlog (our team’s prioritized ”to-do list”)

This process (and any CS312 process) wouldn’t be complete without an(other)
acronym… A good user story is INVESTable. This is a finer grain but similar criteria to
SMART (Specific, Measurable, Achievable, Relevant, Timeboxed), as described in the
ESaaS book.

6

I.N.V.E.S.T. criteria

• Independent: Can be developed in any sequence
• Negotiable: Up to the team to decide how

implement
• Valuable: Delivers some value to end users
• Estimable: We can predict how long it will take to

implement
• Small: Implement in one sprint, ideally
• Testable: Clear acceptance criteria

INVEST is an alternative to SMART (Specific, Measurable, Achievable, Relevant, Timeboxed)

Consider: As a user, I want to see film details, so that I get more information

Does our example user story meet our INVEST criteria? Why or why not?

Likely independent, and negotiable. But not clearly valuable, and knowing if it
is small, estimable and testable would likely require more information, such as
what details. How could we rewrite this user story to better indicate the value?

One area of improvement is to be more specific (so the value can be clearer).
For example, ”User” is not a very specific stakeholder (and a term we should
generally avoid in user stories as it doesn’t tell us much of anything). What
details? And how does the stake holder benefit from those details?

As a film lover, I want to read plot synopses, so that I can find movies I might
like to watch

Note that we could conceive of multiple user stories that target the same
feature from different perspectives. Maybe a casual fan is just interested in
posters, or an industry professional is interested in dates or other data.

7

Example user story for Film Explorer
(an IMDB-like application)

As a user,
I want to see film details,
so that I can get more information.

Independent?
Negotiable?
Valuable?
Estimable?
Small?
Testable?

1. As a reader, I want to see the edit history of an article, so I am aware what
changes have been made and by whom.

2. As a contributor, I want to be able to use rich text formatting, so that I can create
more readable and useful articles (with structured formatting, links).

3. As a reader, I want to be able to perform full text search, so I can find relevant
articles based on their content.

Why does this matter? Writing a user story is a tool for avoiding building what we as
the developer(s) think is cool but is not ultimately what the user/customer wanted or
needed. As the ESaaS authors note: “User stories help all stakeholders prioritize
development and reduce chances of wasted effort on features that only developers
love.” If you can’t articulate the value of the feature, should you be building it?
(Probably not!)

By linking eventual development tasks to User valuable features, you ensure that
even those “developer facing” tasks, e.g., building some “behind the scenes”
infrastructure, are valuable, i.e., serves a feature that is valuable to the user.

9

Write 1-2 INVEST user stories about
existing or desired Simplepedia

features
Feature name
As a [kind of stakeholder],
I want to [some task],
So that [some result or benefit].

We noted earlier that the user stories become the items in our prioritized work
queue. We will talk more about that process next week, in the meantime I want to
emphasize the importance of defining these items to organize and facilitate parallel
work streams, i.e., the whole team contributing at once (recall the "I", "Independent"
in INVESTable).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

10

Student advice: Stories vs. Layers

• “Dividing work by stories helps all team members
understand app & be more confident when changing it”

• “Tracker helped us prioritize features and estimate
difficulty”

• “We divided by layers [front-end vs. back-end vs.
JavaScript, etc.] and it was hard to coordinate getting
features to work”

• “It was hard to estimate if work was divided fairly…not
sure if our ability to estimate difficulty improved over
time or not”

Adapted from Berkeley CS169

Answer: B

I think B is the best answer, but A could be arguable. C (and D) are not correct in this
context, but that doesn't mean you should never say no to the customer.

A spike is a product-testing method originating from Extreme Programming that uses
the simplest possible program to explore potential solutions[1]. It is used to determine
how much work will be required to solve or work around a software issue. I think of it
is as what is the minimal effort that would bring something like integrating Facebook
login into the realm of the known. In this context it helps ensure the user stories are
"estimable" (we know what is involved) and are as "small" as we think (or hope).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

11

The customer wants “login with
Facebook” integrated into their site.
Nobody on your team is familiar with
how to do this. You should:
A. Break up the story into very small user stories to be

on the safe side about how long each chunk takes.
B. Do a time-limited “spike” to explore Facebook

integration, then propose one or more stories to
implement.

C. Apologize to the customer that they can’t have this
functionality

D. Tell them no one uses Facebook anymore, they should
pick a different service

https://en.wikipedia.org/wiki/Extreme_Programming
https://en.wikipedia.org/wiki/Spike_(software_development)

We will think about user stories as a part of hierarchy that starts with Epics. An epic
provides a high-level description of the application’s goals/features. If we can express
it in Connextra format, great! An epic can be expressed/refined into multiple user
stories, which can each be expressed/refined as multiple (testable) scenarios.

[At end]

Not all work items will be user stories. Some work-items will be bugs, Sometimes a
task is necessary but far removed from the user, e.g., read an arbitrary byte range
from a local or remote file. Recall moderation in all things. We don’t want to force
everything we need to into this framework. It is most relevant for user-facing
features.

12

Epics, User stories, Scenarios

Epic

User Stories

Scenarios

has many

has many

As a <stakeholder>
I want to do <something>
so that <result or benefit>.

Given <a context>,
when <an event happens>,
then <an outcome should occur>.

We then break that Epic down into INVESTable user stories, for example… An Epic will
translate into multiple (many) user stories. Recall our goal is to get our user stories to
be small enough to implement in one sprint (the "S", "Small", in INVESTable).

13

Epic > User Stories > Scenarios

Epics provide a higher-level view of the project
goals, e.g.,
As a user, I want to search in a music streaming app
• As a listener, I want to search from every page so

that I can find music I am interested in
• As a listener, I want to search by lyrics, theme,

etc. so that I can find songs when I can’t
remember the title or artist

• As a listener, I want my search customized to my
previous listening so that I get more relevant
results

1. `Given` steps represent state of world before event, the preconditions
2. `When` steps represent event, e.g., simulate user pushing a button
3. `Then` steps represent expected post-conditions, the test expectations
4. `And` and `But` extend any previous step.

14

Epic > User Stories > Scenarios

User Stories are expanded into scenarios
Scenarios are formal but not code.

Creates a “meeting point” between developers and
customers.

With Gherkin syntax, we can turn scenarios into
automated acceptance tests:

Given [a context],
When [an event happens],
Then [an outcome should occur]

There are tools, like Cucumber, that can directly execute these tests, i.e., the first part
corresponds to a function call, and the second is its argument. That said, you don't
have to use Cucumber or its equivalents to implement and get values from "Given-
When-Then"-style tests. For simplicity, we will use code instead of trying to
incorporate Cucumber. Why? Cucumber brings non-trivial overhead. I think the real
value is expressing scenarios in a way that can be readily translated into tests.
Hopefully, you can already imagine how this might translate to tests using React
Testing Library, e.g.,

1. Render the React component associated with that URL (or use a mock router to
render that page)

2. Find the element with the text
3. ”Fire” click even on found element
4. Query for image tag and assert is is displayed

15

Testing scenarios

Given I open the url 'http://the/test/url’
When I click on the element 'Jurassic World’
Then I expect the element

'img[src="http://the/poster"]' is visible

Map to function
Arguments extracted

with RegEx

That is the overall process we are implementing is more important than the specific
tools we use to capture or apply those conversations. The goal for that process is to
encourage conversation, not necessarily to produce specific artifacts (i.e., don’t miss
the forest for the trees…)

16

BDD is all about conversation

“Having conversations is more important than
capturing conversations is more important than
automating conversations”

Liz Keough

https://www.slideshare.net/lunivore/behavior-driven-development-11754474

Answer: A

User stories are about behavior not implementation (recall the "N", "Negotiable" in
INVEST) and are similar to requirements in P&D. Multiple user stories may describe
the same functionality, but from different stakeholders' perspectives. Imagine a
movie ticketing system that integrates with a social network. From the user's
perspective "so that I can see movies with my friends", from a theater owner's
perspective "so that I can sell more tickets". Knowing these perspectives can help us
during the design and implementation of the feature.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

17

Which of the following statements
most accurately describes the goals
and use of BDD?
A. BDD is designed to support validation (build the

right thing) and verification (build it right)
B. The best user stories include information about

implementation choices
C. User stories have no counterpart in plan-and-

document processes
D. Functionality should only be featured in a single

user story for a single stakeholder

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

18

Building a successful UI

Our apps often face users, thus need UI
• How to get customers to participate in the UI

design so they are happy with results?
Goal is to avoid the dreaded WISBNWIW*

• How to get feedback cheaply?
Is there a UI version of User Story index cards?

* What-I-Said-But-Not-What-I-Wanted

I want to emphasize this pitfall from the ESaaS text:

“Sketches are static; interactions with a SaaS app occur as a sequence of actions over
time. You and the customer must agree not only on the general content of the Lo-Fi
UI sketches, but on what happens when they interact with the page. “Animating” the
Lo-Fi sketches—“OK, you clicked on that button, here’s what you see; is that what you
expected?”—goes a long way towards ironing out misunderstandings before the
stories are turned into tests and code.”

That is Lo-fi storyboards should capture the “What happens when the user does…”,
not just what the UI looks at any moment.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

19

Lo-fi Storyboards

19

(Figure 4.4, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

lo-fi prototypes are hugely important tools. It takes time to code up a nice-
looking application. It could all be wasted time if it isn’t what we should be
building. I always encourage you to do some early exploration during the
design phase when it is cheap to make changes. Always draw at least two
designs and try to make them as different as possible. It is very easy to fall
into creating “safe” designs that no one wants to use

[click] The key point to remember, is that what you think is cool, may not be what
your customer/user may think is valuable. Keep in mind that unless you are making
an application for other software developers, you are likely not a very representative
user. We need to be soliciting feedback from (all) representative users and lo-fi
storyboards are an efficient way to do so.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

20

Lo-Fi to React, HTML and CSS

Sketches and storyboards are tedious,
but easier than code! And…
• Less intimidating to non-technical stakeholders
• More likely to suggest changes to UI if not code

behind it
• More likely to focus on interaction rather than

colors, fonts, …

What you think is cool may not be what your users
(customers) think is valuable.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

Student Advice: BDD & Lo-Fi Prototyping

• “Lo-fi and storyboards really helpful in
working with customer”

• “Frequent customer feedback is essential”
• “What we thought would be cool is not what

customer cared about”
• “We did hi-fi protoypes, and invested a lot of

time only to realize customer didn’t like it”
• “Never realized how challenging to get from

customer description to technical plan”

Adapted from Berkeley CS169

