
In our applications so far, such as Simpledia that you are working on right now, the
data is “built into” the application and we ”load” it by importing the JSON into the
application. Why is that not desirable approach going forward?

That data (can) never changes! More typical is to fetch the data as needed from a
server with an AJAX request and persist new or changed data by sending it back to
the server (also via AJAX). AJAX is a technique (with multiple underlying
implementations) to request data from a remote resource in the background without
reloading the webpage.

1

Obtaining data for our application

We will use fetch to obtain data asynchronously

Wasson, Microsoft

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

Let’s break down the architecture of client server interactions. Our client, the
browser, is connecting to a remote server using the HTTP protocol. A “design pattern”
for the backend (server) of our site is the 3-tier architecture, where HTTP
communication terminates at the web server which manages the connection itself
and sends requests onto an application server, which runs the logic for our site. There
is additional a persistence tier where we store the data. Our site logic is often
composed of routing/controller later that specifies and implemented the interface of
our application. The interface to the persistence tier is managed by the models.

[click] Our focus today is the communication between the client, that is the browser
and the server, and specifically between the browser and the interface specified by
the server routers/controllers. This enables us to get new/updated data (that is fetch
data from the server to the client) and persist changes by sending data from the
client to the server. Today we are working from the client-side perspective, that is we
will work with servers that already exist. In the future we will build our own servers.

2

Client
(e.g., browser)

Internet Site

Web Server
(e.g., Apache,

NGinx)

App. Server
(e.g.,NodeJS)

Database
(e.g., SQLite,
PostgreSQL)

Routing &
Controllers
(e.g., NextJS)

Models
(e.g., knex,
objection)

Client-Server

HTTP & URI

HTML, JSON, …

3-tier Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

Next is produced by Vercel. Their business is providing a “serverless” deployment
platform, in which there is not a persistent backend, but instead the routes execute
as ephemeral “edge” functions and the persistence tier, e.g., the database, is
implemented as an external service. We will not use this “serverless” approach, but I
wanted to include it here for context and reference.

3

Interlude: Architectures can be more
distributed

Client
(e.g., browser)

CDN + Edge
functions

(e.g., Next api/)

Service
(e.g.,DB as a

service)

Service
(e.g.,socket as a

service)

…

Next.js pages/api directory
and getServerSideProps()

While I suspect we are familiar with some aspects of HTTP and URLs, I want to
highlight some of the less familiar parts of a HTTP request and the URL. Each HTTP
request includes a method (sometimes called the HTTP verb), the resource path and
the optional query parameters (the latter is the part after a question mark, is a set of
key-value relationships) and fragment. When we type a URL into browser that
automatically triggers a GET request, but when interacting with an API we will use
more of the available methods.

Notice these addresses explicitly specify the port. Ports enable multiple applications
on the same node to use TCP/IP (the networking protocol underlying HTTP)
concurrently and independently. Optional because many protocols have specified
"well-known" ports (e.g., 80 for HTTP) that will be used by default if the port is not
specified. In the latter example, we are running the development server on a non-
standard port and so need to explicitly specify it.

HTTP specifies both the request and possible responses. One of the relevant features
of the latter is the response code, ranges of which are associated with success or
failure (think "404" error…).

Vocabulary: URI identifies a resource while URLs locate (URLs contain a URI, i.e., the
resource, but all the protocol, hostname, etc., where that resource is located).

4

HTTP (and URLs)

HTTP request includes: a method, URI, protocol version and headers

HTTP response includes Protocol version and status code, headers,
and body 2** OK

3** Resource moved
4** Forbidden
5** Error

HTTP is a request-response protocol implemented on top of TCP/IP. The hostname is
translated to the IP address (via DNS or other mechanism). The optional port
specifies with TCP port to use. TCP ports enable multiple applications on the same
node to use TCP/IP concurrently and independently. Optional because many
protocols have specified "well-known" ports (e.g., 22 for SSH, 80 for HTTP) that will
be used by default if the port is not specified (which is why we typically don’t see
URLs like the first example).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

4

Each verb has a typical role, e.g., reading or "get"ing a resource, creating a new
resource (POST), updating etc. While we don't always have to use the verbs this way,
being consistent with this convention will enable us to take best advantage of the
available tools/libraries (which assume that pattern) and ensure our code is readily
understood by others.

5

HTTP methods (verbs)
Method Typical Use

GET Request a resource. Form fields can be sent as the query parameters.

HEAD Similar to GET, but for just the response headers

POST Send data to the server. Unlike GET, the data is transmitted in the
request body. Action is up to server, but often creates a subordinate
resource. The response may be a new resource, or just a status code.

PUT Similar to POST, expect that PUT is intended to create or modify the
resource at the specified URL, while POST creates or updates a
subordinate resource.

DELETE Delete the specified resource

PATCH Partial replacement of a resource, as opposed to PUT which specifies
complete replacement.

Similarly, while there are many patterns for designing APIs (that is combination of
HTTP methods and URLs in use), a widely used approach is REST. In a RESTful
approach we aim to have the URI just be nouns, i.e., resources in our application, and
the verbs provided by HTTP methods. That is our understanding of the resources in
our application, e.g., articles in Simplepedia or films in the FilmExplorer, will drive the
design of the API. As a contrast, an example of non-REST API would be a single
endpoint, i.e., a single URL and verb, that accepted multiple different input messages
where the action was determined by the message body.

We won’t get much deeper in our current understanding of REST, for our purposes I
want to us start thinking in "resources”. Keeping these ideas in mind will help
understand why/how existing APIs are designed and define and implement our own
APIs.

Vocabulary: HATEOAS – Hypertext As The Engine Of Application State

https://martinfowler.com/articles/richardsonMaturityModel.html
Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

6

REST (Representational State Transfer)

• An architectural style (rather than a standard)
1. API expressed as actions on specific resources
2. Use HTTP verbs as actions (in line with meaning in spec.)
3. Responses can include hyperlinks to discover additional

RESTful resources (HATEOAS)

• A RESTful API uses this approach (more formally,
observes 6 constraints in R. Fielding’s 2000 thesis)

• “a post hoc [after the fact] description of the features
that made the Web successful”*

*Rosenberg and Mateos, “The Cloud at Your Service” 2010

https://www.manning.com/books/the-cloud-at-your-service

https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

7

Resource(s): A definition

• Fielding: “a document or image, a temporal
service (e.g., ‘today's weather in Los Angeles’),
a collection of other resources, a non-virtual
object (e.g., a person), and so on”

• Many of our resources are the data used in
our application, e.g., in Simplepedia an Article
or list of Articles

• A resource can have subordinate resources,
e.g., a course may have assignments

What is the key resource in the film explorer (an IMDB-like application)? Films. We
see that resource reflected in the API. We observe the URLs are nouns and the HTTP
methods specify the verbs on those nouns (resources). Per convention, films
describes all the films, while films/:id: describes a single specific film, e.g., the film
with id 34082.

8

Film Explorer API

Route Controller Action

GET /api/films List (read) all movies

GET /api/films/:id Read data from movie with id == :id

PUT /api/films/:id Update movie with id == :id from request data

$ curl http://domain/api/films/340382
{"id":340382, "overview":"The movie follows the story started in the
first Attack on Titan live-action movie.", "release_date":"2015-09-19",
"poster_path":"/aCIG1tjNHbLP2GnlaW33SXC95Si.jpg", "title":"Attack on
Titan: End of the World", "vote_average":4.2, "rating":5,
"genres":[{"id":18,"movieId":340382},{"id":14,"movieId":340382},{"id":28
,"movieId":340382},{"id":878,"movieId":340382}],
"genre_ids":[18,14,28,878]}

http://basin.cs.middlebury.edu:5042/api/films/340382

[click] We will use the term "route" to describe the mapping between the
combination of <HTTP method, URL> (i.e., the action and resource) to a specific
controller behavior.

[click] CRUD(L) is a shorthand for the common operations in a RESTful API shown
here. A resource that provides those operations in this style is often called a RESTful
resource. The description “CRUD app” is describing an application focused on
implementing these operations for a set of resources. It is often used pejoratively to
imply an application is trivial, but in practice building and deploying an application in
the real-world is hardly trivial!

Note the colons. :id is a common notation for indicating a variable named id
extracted from the URL. It is derived from the way URLs are specified in server
libraries, i.e., how we specify that /api/films/:id should match /api/films/1,
/api/films/2, …

9

CRUD(L) on a RESTful resource

Route Controller Action

POST /api/films Create new movie from request data

GET /api/films/:id Read data of movie with id == :id

PUT /api/films/:id Update movie with id == :id from request data

DELETE /api/films/:id Delete movie with id == :id

GET /api/films List (read) all movies

Resource and ”action”

C
R
U
D
L

A “route” maps <HTTP method, URL> to a controller action

For the last. APIs intended for traditional web applications will likely have additional
routes to obtain various interfaces (forms), e.g., an “editing” form pre-filled with the
existing data for that particular movie.

10

Other features of REST APIs

• Resources can be nested
GET /courses/3971/assignments/43746

Assignment 1 in CS101 S19 on Canvas

• Think broadly about what is a resource
GET /movies/search?q=Jurassic

Resource is a “search result list” matching query
GET /movies/34082/edit
Resource is a form for updating movie 34082 (form
submit launches POST/PUT request)

Answer: D

All the above describe resources and a corresponding action. The difference is A & C
are a specific movie while B is presumably all the movies whose title matches the
filter in the query parameters (which could be 0 or more).

11

In Film Explorer each movie has a unique
numeric id, e.g., 135397 for "Jurassic
World". Which of the following routes are
a valid part of a RESTful API?

A.GET /films/135397
B.GET /films?title=Jurassic+World
C.GET /api/v2/movies/135397
D. All of the above
E. None of the above

Answer: A

As we noted before, GET /films/id:/edit would typically be needed to return the form
that a user would fill in to edit movie. That information would be sent to the server as
a PUT request. In a "thick client", the form is built into the client (not fetched from
the server), e.g., as one of our React components. For the latter applications, we only
need the server API to support operations on the underlying data, not provide UI.

12

Which of the following server routes would
be needed in a traditional "thin client" film
explorer but not in the API supporting a
"thick client" SPA* (like we are building)?

A.GET /films/:id/edit
B.GET /films/:id
C.POST /films
D.DELETE /films/:id
E. All would be needed

Placeholder for a
unique movie ID

*SPA: Single Page Application

What do we mean by stateless? Each request is treated independently. The
advantages? No need to maintain client’s previous interactions, and thus
different servers can handle different requests. But in practice we often need
stateful-ness. A common use case is authentication (i.e., you authenticate and
then are allowed to do additional authenticated actions), but there are many
more (preferences, tracking, etc.).

We can’t have the server record IPs (since those are shared), and if we try to
embed the information into the URL, e.g., as a query parameters, we will break
caching and potentially start exposing private information in the URL itself.
These problems motivated the development of cookies.

Cookies are originally sent by the sever and the sent back by the client with
every request (done transparently by the browser). Allows the server to
introduce associate state with a particular request (link it to other requests by
the same user).

But since the cookie is sent to the client it is under their control. We must make
sure we can know if they tampered with the cookie (e.g., to pretend to be
someone they are not). This is the first of many reminders of one of our key
security mantras. We can’t trust the client.

13

Managing statelessness: Cookies

• Observation: HTTP is stateless
• Early Web (pre-1994) didn’t have a good way

to guide a user “through” a flow of pages…
• IP addresses are shared
• Query parameters hard to cache, makes URLs

private information
• Quickly superseded by cookies

Set by server, sent by browser on every request
Since client-side, must be tamper evident

Can’t ever trust the client!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

13

In the situation where we can't use cookies, we will need another mechanism,
typically some form of cryptographic token. As a practical matter that might manifest
in additional parameters we provide when making the request so we can send the
relevant tokens, etc.

Not secret keys: Some uses of Google Maps API key. Instead, you restrict that key to
be just used from your domain.
Secret keys: Keys needed to access Facebook API and other services on behalf of user.
These are intended to remain on the server and are used when that server forwards
request s to Facebook on behalf of that user. Since these keys are secret, they
shouldn’t be sent to the client or committed to your repository (we will learn more
managing secrets in the relevant practical).

14

Statefulness in an API

• Different approaches needed for statefulness
with an API
Client may not be a browser, or
Cookies may not be applicable, e.g., 3rd party API

• Instead use some form of token (API key)
May (not) be a secret
Secret keys aren’t sent to client or committed in VCS
Cookie-like workflows exist for authn in SPA apps

authn: Authentication
authz: Authorization

To actually fetch data in our React applications we will use the `useEffect` hook.
`useEffect` is one of trickier and more controversial hooks. As described in the
documentation, it is an “escape hatch from the React paradigm” that used to
”synchronize your components with an external resource”. Often that external
resource is an API, i.e., you want to synchronize your components with data obtained
via the network from external API. That is how we will use it here (although that is
not the only role for useEffect). The idea is that some change in our component (prop
or state) triggers the effect function. That function obtains whatever data it needs
and ultimately calls a state setter. Here we are using the fetch function to obtain data
from an external server…

[click] 3X

Recall that only state changes trigger a re-render in React. Thus, if your `useEffect`
function is not ultimately changing state (in some way) then you are not changing
your application UI (and something has probably gone awry design-wise).

What don’t you need `useEffect` for: Transforming data during rendering or
responding to user events. Both are better handled within the React paradigm (e.g.,
within the component function or event handlers).

https://react.dev/learn/you-might-not-need-an-effect

15

Fetching from an API in React with the
useEffect hook

useEffect(() => {
 // Execute code with side effects, e.g., fetching data
 fetch("/api/films")
 …
 .then((data) => {
 setFilms(data);
 });
}, []);

Invoke effect when these variables change (no
argument runs the hook on every render, the empty
array runs hook only when component first mounts)

Hook ultimately changes UI by calling state
setter in the effect function

Function should return undefined or “clean up” callback

16

Interlude: Rendering a view while
waiting for the effect

let filmContents = (<h2>Loading...</h2>);
if (films) {
 filmContents = (<FilmTableContainer films={films} ... />);
}

We can now have renders where the data, e.g., films, is
undefined (we are waiting for the request). Our view must
handle both situations.

Use conditional rendering

We will use the fetch function to obtain data from external resource. It will be the
main operation in body of our useEffect hook.

Fetch is asynchronous (getting data from outside world takes time!) and so returns a
promise that resolves when the data is available (like we talked about previously). We
will launch the request in the hook and update state when the value becomes
available, i.e., in a function passed to the then method.

17

fetch returns a Promise

MDN

A common action is setting state

The “next” promise will be fulfilled
with the result of the then handler

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Recall that one of the key advantages of Promises is flattening a deeply nested set of
callbacks into a linear chain of promises. This was not actual code but is an actual
situation. Fetch creates a nearly identical sequence of asynchronous operations! And
as we will hopefully see, it is easier to reason about that sequence in a chain.

18

Recall: Promise vs. callbacks
someAsyncOperation(someParams, (result, error) =>
 // Do something with the result or error
 newAsyncOperation(newParams, (result, error) => {
 // Do something more...
 });
});

someAsyncOperation(someParams).then((result) => {
 // Do something with the result
 return newAsyncOperation(newParams);
}).then((result) => {
 // Do something more
}).catch((error) => { // Handle error});

Flatten nested structure into a chain:

Here we see that linear structure applied to obtaining data from an API and updating
the application state. `fetch` returns a promise that will eventually resolve in the
response object with the status, body (data), etc. The response, when it is available, is
processed by the function provided to `then`.

Why do we need the second then handler, i.e., why can’t we do:
`setFilms(response.json());` ? If we check out the documentation for `response.json()`
we see it too returns a Promise. That is JSON parsing is itself an asynchronous
operation. Here the initial promise return by the first `then` is subsumed by the
promise returned from `response.json()`. When it resolves, we update the
component state (`setFilms`).

<click> If there is an error anywhere in the chain, the `catch` callback will be
executed. Note that here are only logging the errors. In practice we would want to
provide more meaningful feedback to the user when something failed.

19

Obtaining movie data in Film Explorer

useEffect(() => {
 fetch('/api/films/')
 .then((response) => {
 if (!response.ok) {
 throw new Error(response.statusText);
 }
 return response.json();
 })
 .then((data) => {
 setFilms(data);
 })
 .catch(err => console.log(err));
}, []);

Response object with status,
headers, and response body

Parse and return response as JSON

Invoke setter to update UI

As we did before, let's transform this chain into a more discrete set of steps:
`prom1` and ` prom2` are effectively defined immediately, that is `fetch` and the
`then` method return immediately with promises that will be resolved in the future.
• Thus, before the network request has completed, we start executing “Do

something after”
• In the meantime, the browser is performing the network request. When the

request is completed, the promise resolves with the response object and we
invoke the first `then` callback. It immediately returns a promise that will
eventually resolve with the parsed JSON. That newly returned promise subsumes
the original `prom2`.

• When that second promise resolves we perform the state update.

20

Pending

Fulfilled

prom1

Execute
response.json()

response

Pending

Fulfilled

prom2

Pending

Execute
this.setFilms(…)

data

const prom1 = fetch('/api/films/')
const prom2 = prom1.then((response) => {
 return response.json();
});
prom2.then((data) => {
 setFilms(data);
})
// Do something after

Execute
// Do something after

Ti
m

e

Fetch data in
background

Parse JSON in
background

What is the funky-ness with the immediately evaluated function? useEffect is
expecting a function that either returns nothing or function that ”cleans up” any side
effects (e.g., disconnects from a chat server). But an async function returns a Promise
and so can’t be used directly as the function argument to useEffect. Instead, we need
to create the async function inside of useEffect.

Answer: B

Answer A is missing an await for the JSON parsing, answer C has the incorrect logic,
we only want to call the setter if the response is “ok”, and answer D has the first
await in the wrong place (is a Promise, not resp.ok).

More generally, we get the sense there can be a bit a boilerplate involved with fetch.
On approach to mitigate that is to use additional libraries that provide some of the
functionality already. Another is to encapsulate the common code in a custom hook.

21

Which of the following is
equivalent to the
implementation below?
useEffect(() => {
 fetch('/api/films/’)
 .then((resp) => {
 if (!resp.ok) {
 throw new Error(resp.statusText);
 }
 return resp.json();
 })
 .then((data) => {
 setFilms(data);
 })
 .catch(err => {});
}, []);

A useEffect(() => {
 (async () => {
 const resp = await fetch('/api/films');
 if (resp.ok) { setFilms(resp.json()); }
 })();
}, []);

B useEffect(() => {
 (async () => {
 const resp = await fetch('/api/films');
 if (resp.ok) { setFilms(await resp.json()); }
 })();
}, []);

C useEffect(() => {
 (async () => {
 const resp = await fetch('/api/films');
 if (!resp.ok) { setFilms(await resp.json()); }
 })();
}, []);

D useEffect(() => {
 (async () => {
 const resp = fetch('/api/films');
 if (await resp.ok) {
 setFilms(await resp.json());
 }
 })();
}, []);

Recall from the slides about Next (and PA3) that we utilize Next’s dynamic routing
features to manage which view are showing, that is we use the URL to maintain a
portion of application state, specifically which article we are showing. The design of
those URLs is intentional. What is the resource in Simplepedia? An article. We design
the URL structure within our front-end application around that resource. That is, we
are using a RESTful pattern even though there is no server involved. Recall these URLs
are managed entirely within the front-end application running on the browser, but we
still benefit from using a similar design approach.

What is the correspondence between the pages and CRUDL operations we saw
earlier?

articles/[[…id]].js : Read (a single article) or list all articles (within sections)
articles/[id]/edit.js : Read a form for Updating an article (the form is one resource,
the article the other)
/edit.js : Read a form for Creating a new article (the form is one resource, the article
the other).

In PA4 will be extending those pages to use an external API for retrieving data and
creating or updating articles (instead of just modifying state). The forms will make
POST or PUT requests to create or update article resources.

22

REST is not just for servers
src/pages/
 _app.js
 articles/
 [[…id]].js // http://domain/articles/[42]
 [id]/
 edit.js // http://domain/articles/42/edit
 edit.js // http://domain/edit

https://nextjs.org/docs/routing/dynamic-routes

