
1

Recall: “Thinking in React”

1. Break the UI into a component hierarchy
2. Build a static version in React
3. Identify the minimal (but complete) 

representation of state
4. Identify where your state should live
5. Add “inverse” data flow (data flows down, 

callbacks flow up)

https://react.dev/learn/thinking-in-react

https://reactjs.org/docs/thinking-in-react.html


To start, we don’t need to create multiple components – technically. It will work to 
have one giant React component. But it will be difficult to maintain. That doesn’t 
mean the alternate extreme, extracting lots of “fine grain” components is the right 
approach either (moderation in all things). A suggestion: Start from the top, with 
“simple components” (a term we will talk about in a second), and only extract/split 
components when needed. When is it needed? Some signs: repeated content, 
repeated interaction, and the components gets too “big” to the review it all at one 
time on the screen.

https://www.developerway.com/posts/components-composition-how-to-get-it-right

How would you decompose this view from the ”class interactor”? 
• [click] Let’s start with an enclosing `QuestionBoard`
• What are the repeated elements? QuestionPanel? [click]
• Should the QuestionForm be a separate component, or part of the whole? 

Probably separate to minimize complexity of the overall QuestionBoard. 

[click]

Depending on the implementation approach we might also implement a QuestionList 
component that wraps the array of QuestionPanels. The actual application does not 
use one, but I could imagine doing so if we started to have customized sorting logic, 

2

Review: Decompose the UI
QuestionBoard

QuestionForm

QuestionList?

QuestionPanel

https://github.com/csci312-common-v2/class-interactor



etc. What that hints to us, and what we will talk about in more detail today, is that 
components aren’t just about the view, we can create components anywhere there is 
a valuable composition boundary.

As a note, the class-interactor is partly a test-bed/demonstrator for this class. I 
encourage you to check out its code as model of the kinds of things we are working 
towards this semester.

2



Let’s look at another example, a ”filterable” list adapted from the React 
documentation. What components need the search term? Both the SearchBar form 
(to display what is entered) and the FoodTable, to perform the filtering with that 
search term. <click> The state should be placed in the nearest common ancestor, 
FoodExplorer. And will flow down the children as props and ”up” via callbacks. <click>
 
What would the problem with defining search term state in SearchBar? We would 
need to two copies, one in in SearchBar and FoodExplorer. Recall we only want a 
single source of truth.

How might we approach it differently if the search was only applied after clicking a 
search button? Then we we would have two pieces of state, the text currently being 
modified, and the last search term applied. The former could live in SearchBar, the 
latter would still live in FoodExplore..

From Dan Abromov: https://overreacted.io/writing-resilient-components/#principle-
4-keep-the-local-state-isolated

If you’re not sure whether some state is local, ask yourself: “If this component was 
rendered twice in different places, should this interaction reflect in the other copy?” 
Whenever the answer is “no”, you found some local state. …

3

Review: React state placement
Typing in search box filters entries

FoodExplorer

SearchBar
FoodTable

FoodItem

Update 
callback

Prop

• SearchBar and FoodTable both need the “search 
term” 

• State should “live” in the nearest common ancestor, 
i.e., FoodExplorer

https://react.dev/learn/sharing-state-between-components



Consider a social media Post component. It has a list of Comment threads (that can 
be expanded) and a NewComment input….
For example, imagine we rendered the same Post twice. Let’s look at different things 
inside of it that can change.
• List of comments. This is similar to post content. We’d want adding a new 

comment in one tree to be reflected in the other tree too. So ideally, we would use 
some kind of a cache for it, and it should not be a local state of our Post.

• Expand/Collapse. I would be weird in expanding/collapsing in one view changes 
the other, so this be local to the comment threads.

• The value of new comment input. It would be odd if typing a comment in one input 
would also update an input in another tree. Unless inputs are clearly grouped 
together, usually people expect them to be independent. So, the input 
value should be a local state of the NewComment component.

3



Answer: B (although A could be the right choice depending on our goal).

The React philosophy to is to maintain one source of truth. Thus, there should be one 
instance of the pen color (in the drawing component that needs it) and it is passed as 
a prop to the color picker (and updated from the color picker via callback). The 
tradeoff of this approach is that we may have ”lace” that state through many 
components. There are several ways to mitigate that burden. Redux is one. There are 
a lot of tools that can be used with React. And the Internet will have strong opinions. 
But I want to advocate against any change that starts with “I heard that …” 

What about A? As we just discussed in the context of the search bar. It depends on 
how we conceive of the color update. Should dragging the sliders change the pen 
color immediately? Or do we want to have a specific update step? For the former, we 
would want to hoist state up, for the latter, we would likely want separate state 
within the ColorPicker component, itself.

From Dan Abramov of the React team (and creator Redux).

“However, if you’re just learning React, don’t make Redux your first choice. Instead 
learn to think in React. Come back to Redux if you find a real need for it, or if you 
want to try something new. But approach it with caution, just like you do with any 
highly opinionated tool.”

5

You are embedding the color picker in 
a drawing app (to pick the pen color), 
where should you maintain the color 
state?
A. In the ColorPicker, and use a callback to 

communicate changes to the parent drawing 
component

B. In the drawing component
C. Neither. I heard I am supposed to use Redux 

to manage state.

https://facebook.github.io/react/docs/thinking-in-react.html


Recent versions of React incorporated Contexts (effectively pseudo-global variables) 
to reduce the “lacing” (termed “prop drilling”)  burden.

5



As you are considering your component hierarchy, here are some potential 
considerations (and certainly not the only…). 

The first encourages us to think about whether a component is responsible for 
the ”views” seen by the user (presentational) or the logic that underlies the 
interaction (container). Making that distinction encourages separating those 
two concerns.

The next consideration is that components should generally either implement 
specific functionality or compose (group) other components together. From 
the blog post: ‘A component should be described either as a “component that 
implements various stuff” or as a “component that composes various 
components together”, not both.’

The third's names are terrible. Perhaps a better description is specific vs. 
generic. We are considering whether a component is implementing 
functionality specific to this use case or might be generic/reusable. An example 
might be a toggle feature that not is specific to any one toggling element.

The last used to be a very important technical consideration in the era of 
classes vs. functional components, which is less (no longer) relevant in the 
hook’s “era”. Now functional components (components implemented as a 

6

What are some roles for components?

• Container vs. Presentational1
– Containers implement state & logic
– Presentational (typically) renders DOM

• Implement vs. Compose2

• Simple vs. Container2 (specific vs. generic?)
– Simple explicitly render children
– Container offer generic composition via children 

prop, etc.
• Stateful (class) vs. stateless (functional)
1https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
2https://www.developerway.com/posts/components-composition-how-to-get-it-right



function) can be stateful and we default to functional components for 
everything. What is a hook? They are “functions that let you “hook into” React 
state and lifecycle features from function components.” The useState function 
we saw previously is an example of a hook (the convention is to use names 
starting with “use”). They are mechanisms for maintain state within functional 
components, effectively across renders.

6



In the context of the “Question Board” we discussed the potential for a `QuestionList` 
component to manage the ordering, etc. of the questions. We would describe that as 
a Container Component. We could apply the same idea to the `FoodExplorer`. The 
idea of the container component would be to encapsulate the filtering operation on 
the food items, separating it from the enclosing `FoodExplorer` component, and the 
“presentational” `FoodTable` that renders the food on the screen. Why might that 
benefit us? We can separate those two concerns, rendering the list and 
filtering/ordering the list. They can evolve, be tested, and perhaps now used 
independently.

That said, some of the role of container components has been taken over by custom 
hooks which can collect logic (for reuse). Dan Abramov, who proposed this notion in 
2015, updated the post in 2019 with

“I wrote this article a long time ago and my views have since evolved. In particular, I 
don’t suggest splitting your components like this anymore. If you find it natural in 
your codebase, this pattern can be handy. But I’ve seen it enforced without any 
necessity and with almost dogmatic fervor far too many times. The main reason I 
found it useful was because it let me separate complex stateful logic from other 
aspects of the component. Hooks let me do the same thing without an arbitrary 
division. This text is left intact for historical reasons but don’t take it too seriously.”

7

Container components: Separating 
logic from UI

Separation of Concerns:
• Container Component (CC): Concerned 

with how the application works, i.e., 
implements logic

• Presentational Component (PC): 
Concerned with how the application 
looks. Typically generates DOM.

FoodExplorer

FoodTable

Food array

Filter

“Remember, components don’t have to emit 
DOM. They only need to provide composition 
boundaries between UI concerns.” Dan Abramov

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

https://reactjs.org/docs/hooks-custom.html
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0


For example, his update would suggest a “filtering” hook that encapsulates the 
filtering operation. It could replace the specific filtering component, i.e., in 
FoodExplorer we might have
[fitleredFoods, filterString, setFilterString] = useFiltered(foods);

Personally, I think think there is value in this consideration and applying in your 
design process. Whether that process turns into components or hooks, the 
underlying considerations are similar.

7



Here we implement a hook that encapsulates the search string state, and the filtering 
operation. It would replace any “FilteredList” container component we might have 
created before. It exposes that underlying search string state (so it can be set by the 
form, or some other means), and the filtered array. Each time the enclosing 
component is re-rendered, the current search string will be used to filter the `data` 
array. 

As noted in the documentation, custom hooks let you share stateful logic, not state. If 
you invoked `useFilter` in two different components you would have two distinct 
filterString states (i.e., they could change independently).

Do you need to write or use custom hooks? No. But they can be a means for 
simplifying your code. If you find yourself duplicating logic between components, that 
might be a sign to create a hook. Further, there are libraries of pre-written hooks for 
common tasks, e.g., toggling, knowing if the user’s network is connected, etc. which 
you can reuse in your application. 

8

Custom hooks?
Custom hooks are a means to share stateful logic 
between components

For example, we want to share filtering based on some 
stateful search string

function useFilter(data, toStrings) {
  const [filterString, setFilterString] = useState('');
  const query = filterString.toLowerCase();
  const filteredData = data.filter(item =>
 toStrings(item).some(word =>
      word.toLowerCase().startsWith(query)
    )
  );  
  return [filteredData, filterString, setFilterString];
}

function FoodExplorer() {
  const [foods, setFoods] = useState([…]);
  const [fitleredFoods, filterString, setFilterString] = useFiltered(foods, …)
  …



Answer: C

As described CommentList is both a Presentation Component and Container 
Component, in that it generates DOM (the <ul>) and so is concerned with how the 
application looks *and* is concerned with how the application works (i.e., gets 
comments from server). It could be split into a container component that fetches the 
data and a CommentList component that displays the comment list UI. Or now in the 
hooks era, we could use a hook to fetch the data from the server (effectively serving 
in the “container” role) and our component would be responsible for rendering the 
comments as a list.

10

You have implemented a CommentList 
component that fetches an array of comments 
from your server and renders those comments 
as an unnumbered list (i.e., <ul>...</ul>). 
CommentList is a:

A. Presentation component
B. Container component
C. Both a presentation and container component
D. Neither a presentation not container component



Recall that React is trying to figure the minimal number of edits to apply when 
updating the browser screen. If you insert an element of the array it might seem to 
React that all of the elements in the array have changed because now oldArray[0] !== 
newArray[0]. And thus, React might do a lot more work re-rendering all the elements. 
But in reality, the rendering of all the remaining elements can be reused. Using keys 
in this context helps React realize that elements just shifted (and thus can be reused).

Note that keys are powerful tools outside of sequences. For example, we can use 
keys when we want to “reset” a component (https://react.dev/learn/you-might-not-
need-an-effect#resetting-all-state-when-a-prop-changes)

11

Interlude: Sequences in React

function FilmTable(props) {
  const films = props.films.map(film => (
    <FilmContainer
      key={film.id}
      {...film}
      setRatingFor={props.setRatingFor}
     />
  ));
  return <div>{films}</div>;
}

“Arrays” need key to uniquely 
identify components

“Keys help React identify which items have changed, are 
added, or are removed. Keys should be given to the elements 
inside the array to give the elements a stable identity. Most 
often you would use IDs from your data as keys” -ReactJS Docs

https://react.dev/learn/rendering-lists

https://react.dev/learn/rendering-lists


The first other pattern utilizes short circuit evaluation in the and (&&) operation. If 
the first operand is falsy JS won’t evaluate the second expression. And React will not 
render anything for {false}. The second pattern is the ternary operator which is 
effectively an inline if-else expression. If the Boolean predicate evaluates to truthy it 
will evaluate to Component1 (before the colon), if falsy it will evaluate to 
Component2 (after the colon). 

Note there is a caveat to the short circuit evaluation approach. React will render 
some values JS considers falsy, most notably numbers. i.e., 0 && < … > will render 0. 
As result some developers prefer {Boolean ? <…> : null }.

https://react.dev/learn/conditional-rendering

12

Interlude: Conditional rendering
function FilmContainer(props) {
  const [showDetail, setShowDetail] = useState(false);
  if (showDetail) {
 return <FilmDetail {...props} onClick={() => setShowDetail(false)} />;
  } else {
    return <FilmSummary {...props} onClick={() => setShowDetail(true)} />;
  }
}

A React function is code and so you can 
use conditionals to change views

Some other common conditional patterns:
{boolean && <Component … />}
{boolean ? <Component1 … /> : <Component2 … />}

https://react.dev/learn/conditional-rendering

https://react.dev/learn/conditional-rendering


Or more generally, should a button care what its children are? Not really…

Note that are other, even more sophisticated composition patterns, that we won’t 
get into here.

13

Simple/Specific vs. Container/Generic

What if I want a button with an icon?

const Button = ({ title, onClick }) => <button onClick={onClick}>{title}</button>;

Functional component rendering DOM

const Button = ({ children, onClick }) => 
 <button onClick={onClick}>{children}</button>;

<Button onClick={onClickHandler}>
  <Icon />
  <span>Create</span>
</Button>

Special prop with all child components

https://www.developerway.com/posts/components-composition-how-to-get-it-right



Prior to hooks, State could only be implemented in classes. Function components 
could only used for stateless components (for which they were recommended over 
classes). Now with hooks function components can be stateful and are recommended 
in all but a few highly specialized situations.

Adapted from Dan Abramov

14

Class vs. Functional Components

• Classes can have state! And lifecycle 
methods.

• Functions are suggested unless you need 
Class features since they are simpler and may 
be optimized in the future

Function components are suggested in all situations 
(using Hooks if stateful)



React uses the order in which hooks are called to maintain the mapping between 
state and useState calls. Thus, the order needs to be same every time the React 
function is invoked (conditions and loops are likely to violate this assumption). The 
second rule ensures that all stateful logic in a component is clearly visible from its 
source code. There are ESLint rules included in our skeletons that will check some 
aspects of these rules (but no linter rule is perfect…). We go beyond these rules to 
also collect all hooks at the very beginning of the component function so they are 
clearly visible as we read the code.

https://reactjs.org/docs/hooks-rules.html

15

Interlude: Rules of Hooks

• Only call Hooks at the top level of a function
Don’t call Hooks inside loops, conditions, or nested 
functions

• Only call Hooks from React functions or 
custom Hooks
Don’t call Hooks from regular JavaScript functions

• Convention is to put hooks at start of the 
function

https://reactjs.org/docs/hooks-rules.html



Here is a representative implementation of React. One question is where is React 
state actually stored? In a closure (here useState closes over the local hooks array in 
the PseudoReact function).

Notice that hooks are tracked by index. Thus, all hooks need to execute in the same 
order every time. Loops, conditions, nested functions, etc. all have the potential to 
change to order in which the hooks are invoked. And thus, we should invoke a hook 
inside any of those constructs.
 
How does React know what functions to invoke? It keeps track of all of the 
components you previously rendered starting with the ReactDOM.render call ”kicks” 
off React and inserts the results in the web page.

https://www.netlify.com/blog/2019/03/11/deep-dive-how-do-react-hooks-really-
work/

16

Where do these rules come from?

const PseudoReact = (() => {
  let hooks = [], currentHook = 0; // array of hooks
  return {
    useState(initialValue) {
      hooks[currentHook] = hooks[currentHook] || initialValue;
      const setStateHookIndex = currentHook;
      const setState = newState => 
        (hooks[setStateHookIndex] = newState);
      return [hooks[currentHook++], setState]
    } 
  } 
})();

https://www.netlify.com/blog/2019/03/11/deep-dive-how-do-react-hooks-really-work/

Actual state storage

State tracked by index



Although we mutated one of the elements in the films array, the films variable still 
points to the same array object. The state setter compares the new and old object 
when deciding if the component is “dirty” and thus needs to re-render. The 
comparison rules are lengthy, but generally simple values like integers are compared 
via equality while objects are compared by reference. In this case, since it is the same 
object (old films and new films point to the same array in memory), React may not 
trigger a re-render.

[click]

What about the lower snippet? `sort` is in place. If `FilmTable` compares its new 
props to previous props it may think nothing as changed. This last one is more subtle 
and motivates us to learn more about what re-rendering means in React.

[click]

https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-arrays-in-state

18

What might go wrong here?

const [films, setFilms] = useState([]);
…
const setRating = (filmid, rating) => {
  const index = films.findIndex((film) => film.id === filmid);
  films[index].rating = rating;
  setFilms(films);
}

Calling setter with same object may not 
trigger a re-render since React doesn’t 
think anything changed

films.sort(...);
return (<FilmTable films={films} … />);

Sorts in place so React 
may not know that 
FilmTable’s props have 
changed, and thus not 
re-render



Recall this image from last time. The red circles are components where a state update 
occurred. Notice in the right image that those nodes – and all of their children, 
children’s children, etc. – are re-rendered. 

A change to state is the only thing that causes re-renders, that is why the empty 
nodes didn’t re-render. They weren’t the children of components with state changes. 
That is why we want to be careful to be sure React recognizes state has changed. If 
not, the desired nodes may be not be re-rendered.

But what about props? In the second snippet, we were concerned about a change to 
a prop not getting recognized as such and re-rendering get cut-off before reaching the 
leaf node(s), (e.g., the right-hand side leaves). By default, that is not a concern, React 
re-renders all children because it may not know what has changed. But there are 
some obvious optimization opportunities. If a component is ”pure”, i.e., only depends 
on its props, and those props haven’t changed we don’t need to re-render. 
Historically React could employ that optimization automatically for certain 
components and now it is an opt-in (and may become automatic in the future again). 
We may not know if a child has that optimization employed and so want to be 
conservative to minimize the possibility for subtle bugs.

In general, operations on JS objects are cheap compared to re-rendering and so 
should measure before we attempt to optimize JS manipulation that may lead other 

19

Re-rendering in React

https://calendar.perfplanet.com/2013/diff/

Components where 
state changed



problems. We also shouldn’t automatically reach for those opt-in optimizations 
(`useMemo` and `useCallback`) hooks unless we have profiled (i.e., measured the 
performance) and know they are needed. They don’t magically fix performance 
problems and introduce a cost of their own.

19



Assigning to state used to be more of an issue in the class era. Now JS variable 
declaration rules can help use avoid that issue with hooks, by preventing us from re-
assigning state. But they don’t prevent missed updates due to mutating state. So, 
what do we do instead? Make copies. 

https://react.dev/learn/updating-objects-in-state

20

Take home message: Don’t mutate 
state or props, create new objects

• Assigning to state does not trigger a re-render
• Mutated state/props will not compare as 

different objects and so may not trigger a re-
render

// Typical hook pattern prevents reassignment
const [comments, setComments] = useState([]);
comments = ['Hello']; // Javascript error

// But doesn’t prevent mutation
const [comments, setComments] = useState([]);
comments.push('Hello'); //modifies array in-place
setComments(comments); // new and old comments are shallow equals



Instead, we make copies. Here we are making a copy of the films array with map. 
Further we making a copy of the specific object we are modifying. As a result, 
everything that has changed, the array and the modified film, point to new locations 
in memory.

To make a copy of the object, we are using the spread operator. The spread operator 
(the ellipses) works by populating the new object literal with all the properties of the 
film object and then overwrites that with rating (this concise syntax is short for 
`rating: rating`). The comment shows how to do the same with Object.assign. 

[How does Object.assign work in this context? assign overwrites the properties of its 
1st argument with the remaining arguments (in order). Thus, this create a new empty 
object, overwrites with the properties in film and then overwrites the rating property 
with the new rating.]

Wait, wait I hear you saying. Isn’t this inefficient (and verbose/awkward)? Yes, but it 
may not matter. First, and most importantly, we don’t want to start optimizing unless 
we know something is a problem. In many cases, it won’t matter. For us, updating the 
screen is much more expensive that manipulating objects; minimizing/optimizing re-
renders can be more important. If we do observe performance problems, we can look 
towards caching techniques (e.g., useMemo hook) or immutable data structures  to 
speedup and simplify updates for complex objects.

21

Make copies instead of mutating

const setRating = (filmid, rating) => {
  const newFilms = films.map((film) => {
    if (film.id === filmid) {
      // or return Object.assign({}, film, { rating: rating});
      return { ...film, rating }; 
    }
    return film;
  });
  setFilms(newFilms);
}

map creates a new array

Create a new object 
instead of mutating

Now newFilms !== films, even with 
shallow (reference) compare



By default, HTML input components have their own internal state and ”update” loop, 
i.e., dragging the slider updates that internal state. Controlled components override 
that internal update loop with React’s update loop. Dragging the slider triggers the 
onChange event which updates the states which triggers a re-render which moves the 
slider, … The motivation is to maintain that single source of state, that is everything 
(the logic and the UI) is ”controlled” by the same React state. Doing so makes the 
component “predictable”, we know it will always show the state we specified and 
enables us to access those values for validation and other uses.

23

Recall: React controlled components

function Example(props) {
  const [title, setTitle] = useState('');
  
  return (<input
    type="text"
    value={title}
    onChange={(event) => setTitle(event.target.value})}
  />);   
}

Render
state

Update
state
on every
input

Input value determined by React state

Change updates state, which re-renders 
input with new value



The ”con” for controlled components is lots of callbacks because we need to 
implement onChange and other handlers to update value (triggering the re-render).  
But there are a lot of advantages that come from being able to act on the input state 
in the component logic.

In React, an <input type="file" /> is always an uncontrolled component because its 
value can only be set by a user, and not programmatically.

https://goshakkk.name/controlled-vs-uncontrolled-inputs-react/

24

React: Controlled vs. Uncontrolled

Uncontrolled component:
<input type="text" ref={(input) => this.input = input} />

(Familiar?) Controlled component:
<input type="text" value={…} onChange={…}/>

+ Single source of truth
- Lots of callbacks

Reference to real DOM element

Feature Controlled Uncontrolled

One–time retrieval, e.g., on submit ✔ ✔

Validating on submit ✔ ✔

Instant validation ✔ ✘

Conditionally disabling submit ✔ ✘

Several inputs for one piece of data ✔ ✘

Dynamically modify data (e.g., capitalize) ✔ ✘

<input type=“file” /> ✘ ✔


