
1

Turing Award winner Brian Kernighan, co-inventor of the C language
Turing Award winner Edsger Dijkstra

The heart of Dijkstra’s message is that only formal methods that prove correctness
can demonstrate the absence of bugs. But those tools only work in very limited
scenarios (that aren’t relevant to what we will be working on). Thus, for us, testing
can’t prove the negative, the absence of bugs, only show the presence of bugs. Thus,
we want to try to write tests that are likely to expose possible bugs, i.e., the test both
”happy” paths (working code) and “sad” paths (error scenarios), with particular
attention to corner cases that are likely to reveal bugs.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

Testing can
never
demonstrate
the _______ of
errors in
software, only
their ________

Debugging is twice
as hard as writing
the code in the
first place.
Therefore, if you
write the code as
cleverly as
possible, you are,
by definition, not
smart enough to
debug it. absence

presence

What do I mean by “ad hoc” testing — it is the kind of testing we all do (myself
included!)... You try a couple of examples and when it doesn’t blow up, you declare it
working!

Historically, there were large numbers of dedicated ”testers”. I have seen descriptions
of Microsoft having a 1-1 ratio of testers to developers. That tends not to be the case
anymore. Now “testing” groups build the tooling that helps developers testing their
own code. <click> And the expectation is that …

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

2

Testing in an “agile” workflow
Plan & document (Waterfall, et al.)
• Developers finish code, do some “ad hoc” testing
• Toss over the wall to Quality Assurance (QA)
• QA staff responsible for testing

agile
• Testing is part of every agile iteration
• Developers test their own code
• Testing tools & processes are highly automated
• QA/testing group improves testability & tools

Recall our focus is on agile development methods, which are all about short
development cycles that improve working (but not yet complete) code. We can apply
that same idea at every level. To that end we will practice test-driven development in
which we write the tests first, then implement the code that passes those tests (I
suspect this is very different from the way you typically work...).

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

3

Test-driven development (TDD)
• Think about one thing the code should do
• Capture that thought in a test, which fails
• Write the simplest possible code that lets the test

pass
• Refactor: DRY out commonality w/other tests
• Continue with next thing code should do

Red – Green – Refactor
Aim to “always have working code”

4

Hierarchy of testing (from “high” to
“low” level)

• System (or end-to-end) testing: Testing the entire
application (typically to ensure compliance with
the specifications, i.e., "acceptance" testing)

• Integration testing: Tests of combinations of units
(i.e., integration of multiple units)

• Unit testing: Tests for isolated "units", e.g., a
single function or object

• Static testing (analysis): Compile or build time
testing/analysis

What are the advantage of unit tests (in the view of the Google authors)? Fast,
Reliable, and Isolates failure (each unit test is focused on a small part of the code).
The limitation is that the tests don’t simulate a “real user”.

Why the difference between the Google blog post and Dodds? Unit testing doesn’t
verify components work together. In a UI setting, for example, unit tests often verify
that framework works as documented (click invokes handler) not that your
application does the right thing in that handler.

“It doesn’t matter if your button component calls the onClick handler if that handler
doesn't make the right request with the right data! So, while having some unit tests
to verify these pieces work in isolation isn’t a bad thing, it doesn’t do you any good if
you don’t also verify that they work together.” -Kent Dodds

5

Where do I spend my effort?

Google testing blog

Sp
ee

d

Kent C Dodds “Write tests. Not too many.
Mostly integration.”

Co
m

pl
ex

ity

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c
https://blog.kentcdodds.com/write-tests-not-too-many-mostly-integration-5e8c7fff591c

Coverage alone is limited measure of test quality. A high-quality test suite will likely
have high coverage, but a high coverage test suite does not guarantee high quality. A
key use for code coverage can be to help you find the portions of the code base that
are not being tested. Testing is really about confidence, specifically building your
confidence that the code works as intended and you didn't break anything as you
made changes. Enough testing is the amount that creates that confidence for you.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

6

How much testing is enough?

• Bad: “Until time to ship”
• A bit better: X% of coverage, i.e., 95% of code

is exercised by tests
• Even better?

“You rarely get bugs that escape into production,
[and] you are rarely hesitant to change some code
for fear it will cause production bugs.”

–Martin Fowler

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

7

Moderation in all things

× “I kicked the tires, it works”
× “Don’t ship until 100% covered & green”
þ Use coverage to identify untested or

undertested parts of code
× “Focus on unit tests, they’re more thorough”
× “Focus on integration tests, they’re more

realistic”
þ Each finds bugs the other misses

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

8

Tests should be F.I.R.S.T.
• Fast: Tests need to be fast since you will run them

frequently
• Independent: No test should depend on another

so any subset can run in any order
• Repeatable: Test should produce the same results

every time, i.e., be deterministic
• Self-checking: Test can automatically detect if

passed, i.e., no manual inspection
• Timely: Test and code developed currently (or in

TDD, test developed first)

Answer: D

Both kinds of code are not repeatable, since the random shuffle could be different
each time, and the backup test would depend on the current day of the week when
testing. Both would require some form of mocking (replacing code during testing) to
make the random number generator deterministic and control the "current" day of
the week.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

9

Which of the following kinds of code can be
tested Repeatedly and Independently (without
additional tools)?
1. Code that relies on randomness (e.g.,
shuffling a deck of cards)
2. Code that relies on the time of day (e.g., run
backups every Sunday at midnight)
A. Only 1
B. Only 2
C. Both
D. Neither

10

Anatomy of a test

• Arrange the precondition(s)
Create the “context” for your test
Ensure test is “Independent” and “Repeatable”

• Act on the System Under Test (SUT)
• Assert the postcondition(s)

In class we will use the Jest test tool (runner/assertions). This is one those one choice
among many… Much like many programming languages have different syntax, but
similar semantics (functions, conditionals), test frameworks tend to have similar
features. We will try to highlight those aspects as we talk about Jest.

<click> A describe block collects one or more tests with shared setup/teardown.
<click> Each test will contain <click> one or more assertions

Linking back to the more general anatomy we just discussed:
• There is effectively no arranging here (we don’t need it)
• We act by invoking the fib function
• Make assertions about its return value.

Note that this just the start of the tools available within Jest. Check out its
documentation, with a particular eye to the many different matchers it provides. In
general, we want to use the most specific matcher possible, i.e.,
expect(fib(0)).toBe(0) is preferred over expect((fib(0) === 0).toBeTruthy(). Why? The
test is clearer (and thus easier to maintain) and we will get more informative error
messages, i.e., that we didn’t get the return value expected as opposed we didn't get
the Boolean value we expected.

11

Anatomy of a test with Jest

// Import fib function from module
import { fib } from './fibonacci';

describe('Computes Fibonacci numbers', () => {
 test('Computes first two numbers correctly', () => {
 expect(fib(0)).toBe(0);
 expect(fib(1)).toBe(1);
 });
});

Set of tests with common purpose, shared setup/teardown

Individual test
One or more expectations/assertions:
expect(expression).matcher(assertion)

https://jestjs.io/

What is tricky here? Repeatability. We would could get different results on the
different days. How could make it repeatable? Try to work “relatively”, i.e., define the
inputs in terms of today. But limits how we can construct our tests and could be tricky
in its own right!. Alternately, we can control today’s date by replacing Date with a
mock implementation with a known, repeatable, value. <click>

Mock functions allow us to control the return value (and assert it was called with
specific arguments, etc.)

Now we see the 3 phases more clearly. We arrange preconditions with a known date
for today. We act by calling the `isBirthday` function and make assertions about the
return value given the context we arranged.

Does just creating the mock make our tests F.I.R.S.T.? No, it gets us part of the way
there. The mock makes the test repeatable, while invoking `restoreAllMocks`, which
resets spies, like the Date constructor, back to their original value, make his test
independent (or more precisely other tests independent of this one).

What is missing from this test suite? The “sad” path, i.e., tests for days that aren’t the
birthday, i.e., when the function should return false.

12

How would you test this function?
const isBirthday = function(birthday){
 const today = new Date();
 return today.getDate() === birthday.getDate()
 && today.getMonth() === birthday.getMonth();

}

test("Test if this works on the birthday",()=>{
 const birthday = new Date('August 15 1999');
 const today = new Date('2022-08-15T12:00:00');
 jest.spyOn(global, 'Date')

 .mockImplementation(()=> today);
 expect(isBirthday(birthday)).toBeTruthy();
 jest.restoreAllMocks();

});

Jest “spies on” the global Date object’s constructor
and replaces it with our preset date.

Definition of seam from Michael Feathers in Working Effectively With Legacy Code

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

13

An example of seams

Seam: A place where you can change an application's
behavior without changing its source code.

• Useful for testing: isolate behavior of code from that
of other code it depends on

• Here we use JS’s flexible objects to create a seam for
Date()

• Make sure to reset all mocks, etc. to ensure tests are
Independent

Answer: B (although A is arguable)

The primary benefit is to keep tests Fast and Repeatable. Fast because they are not
actually accessing the Internet and Repeatable because the tests are not dependent
on the current state of an external service (that may not be under your control).
Simply creating mocks does not automatically make tests independent. As we saw
before, you need to make sure the mocks are created in a way (e.g., initialized for
each test and ”cleaned up” afterwards) that ensures tests are independent.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

14

What is the primary benefit of
mocking an external service (such as
an API accessed via the Internet)?

A. Keeps each test “Independent” (from other
tests)

B. Keeps tests “Fast” and “Repeatable”
C. Tests can be written before the code
D. Tests can be “Self checking”

One of the roles for seams is to decouple development of different portions of the
application.

Example, what if we wanted search functionality…
• Who would collaborate to provide that search (mock a search function on a server)
• Test the “happy path” with search results, and the “sad path” without

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

15

Seams, not just after-the-fact

Development is an iterative process
• Work from the “outside in” to identify code

“collaborators”
• Implement “the code you wish you had” at

seam
• Efficiently test out the desired interface

Within a test suite Jest provides methods for different types of setup and teardown.
How might you use these? If you find yourself performing the same setup in multiple
tests, that is a sign to pull it out to a shared setup/teardown function. For example,
you might use beforeEach and afterEach to configure and reset mocks used in the
tests. When we start using databases, we will frequently use beforeAll to initialize the
database (since it only needs to happen once) and beforeEach to set/reset the data
therein to a known state.

The suites execute setup/teardown in nested order, i.e., you can nest these functions.

More generally this an example of functionality that (most) every testing tool has.
The naming, etc. might be slightly different, but should be able to expect similar
capabilities.

16

Suite lifecycle methods for
independence, repeatability…

describe('My test suite', () => {
 beforeAll(() => {
 // Run once before all tests
 });
 afterAll(() => {
 // Run once after all tests
 });
 beforeEach(() => {
 // Run before each test
 });
 afterEach(() =>
 // Run after each test
 });
 describe('Nested test suite', () => {
 // Nested lifecycle methods
 });
});

“One-time” setup &
teardown

“Repeating” setup &
teardown

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

17

Student advice: TDD & Testing

• “TDD is hard at first, but it gets easier”
• “Was great for quickly noticing bugs

[regression] and made them easy to fix”
• “Helped me organize my thoughts as well as

my code” [the code you wish you had]
• “Wish we had committed to it earlier & more

aggressively”
• “We didn’t always test before pushing, and it

caused a lot of pain”

Adapted from Berkeley CS169

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

18

Student advice: Test coverage, code
quality

• “Good coverage gave us confidence we
weren’t breaking stuff when we deployed new
code”

• “Felt great to get high grade from [coverage
estimator]”

• “Pull-request model for constant code reviews
made our code quality high”

• “Wish we had committed to TDD + coverage
measurement earlier”

Adapted from Berkeley CS169

In keeping with TDD, once you identify the bug, make a test that exercises the bug
(and thus fails), fix the bug and then verify that your test now passes.

One of the things I find most challenging about software development, generally, is
the indeterminate time required for debugging. No amount of experience suddenly
makes debugging predictable. You will have to spend the time (and often an unknown
amount of time). But I want to distinguish between good time and bad time. This
type of “scientific debugging” represents good time. You have a specific hypothesis of
the problem and tests that you can use to confirm/falsify that hypothesis. When you
no longer have a specific idea, when you are just making changes randomly, that is
“bad time” where you have stopped being productive. That is a good moment to
pause, do something else to clear your head and seek out help (in our case, Ed
discussion board, drop-in hours, office hours, etc.). Our assignments are not intended
to be trivial, but they are also not intended to be slogs. Before you start, set an
expected amount of time for yourself. When that time has elapsed evaluate if you are
spending good time or bad time.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

19

Despite testing, debugging happens

To minimize the time to solution, take a “scientific”
approach to debugging:
1. What did you expect to happen (be as specific as

possible)?
2. What actually happened (again as specific as

possible)?
3. Develop a hypothesis that could explain the

discrepancy
4. Test your specific hypothesis (e.g., with

console.log, the debugger)
When you find that bug, make a test!

This has some overlap with our previous example, but steps “back” to offer a more
general process. Some of these steps occur before we have, or more accurately,
actually find bugs.

These are from the book “Debugging” by Dave Agans. He wrote: “You need a working
knowledge of what the system is supposed to do, how it’s designed, and, in some
cases, why it was designed that way. If you don’t understand some part of the system,
that always seems to be where the problem is. (This is not just Murphy’s Law; if you
don’t understand it when you design it, you’re more likely to mess up.)” … “The
essence of “Understand the System” is, “Read the manual.” Contrary to my dad’s
comment, read it first—before all else fails.”

That is start by looking at the documentation for the system, library, function, etc. you
are going to use before you start using it. By doing so we can avoid bugs and already
have a mental checklist of potential causes before we start debugging.

A key step to debugging is making the problem appear repeatedly. Only by doing so
can you observe the problem, identify the true cause and be confident you actually
fixed the problem. #3 is a reminder to actually “visualize” the failure, e.g., via print
statements, debugger, not just attempt to intuit the issue.

Agans, David J.. Debugging: The 9 Indispensable Rules for Finding Even the Most

20

Another way of thinking about
debugging: 9 rules…

1. Understand the system
2. Make it fail
3. Quit thinking and look
4. Divide and conquer
5. Change one thing at a time
6. Keep an audit trail
7. Check the plug
8. Get a fresh view
9. If you didn’t fix it, it ain’t fixed

debuggingrules.com

Elusive Software and Hardware Problems. HarperCollins Christian Publishing. Kindle
Edition.

20

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

21

A bug in external code/tool? The
R.A.S.P. method

• Read the error message (really read it).
• Ask a colleague an informed question, not just

"Why doesn't it work?".
• Search using keywords from error, specific SW

versions, etc..
• Post on online forum. Everyone is busy, you

will get better answers if you provide a
Minimal, Complete and Verifiable example

https://stackoverflow.com/help/mcv

What do you hypothesize the problem is, and how would you approach finding and
fixing it?

22

You found a bug, a case study

1. Hypothesis: There is an unintended limit on the string length
2. Build understanding: Reviewing documentation reveals the

database’s string type has a default length of 255.
3. Create test to demonstrate error, e.g.,:

"This is a long description".repeat(100)

4. Visualize error: Observe saving a long reminder generates a ”string
too long” error

5. Revise types to allow variable length strings
6. Ensure tests are now passing!

“In-class” has a reminder feature. But it didn’t work when I tried to
post a multi-sentence reminder but did when I just use “test” as the
message.

https://knexjs.org/guide/schema-builder.html

