
In an academic setting, we often learn new languages for pedagogical purposes, to
get exposure to new ways of thinking. In a professional setting, we usually need a
more pragmatic reason.

Often there simply is no choice – web browsers run/require Javascript (it is the only
language natively supported across all browsers). Often though, we choose a
particular framework or library first, as we think it will be a good fit for a particular
problem. The choice of framework determines the choice of language.

When we talk about learning a new language, we are really talking about learning an
entire “stack”, an ecosystem consisting of language(s), framework(s), and tools (e.g.,
database systems, development tools, etc.)

This is a moment where we made one of those “no right answer” decisions. To
minimize the number of languages we learn in this class, we will use Javascript for
both the front-end and back-end of our applications, not just the front-end
components that run in the browser. This is the not the only choice, many (e.g., the
Saas book authors) argue one should use different languages/frameworks on the
back-end.

1

Why do you learn a new language?

• Platform requires it, e.g., JavaScript in the web
browser

• You want to use a particular framework or
library, e.g., Ruby on Rails

Typically, there was some reason that a language was chosen for a specific task, or to
be the base for a particular framework. That reason, or more specifically those
features are likely heavily used and so it is something we want to master. In the case
of JS, we will see that the language has evolved for its specific use case – enabling
interaction in the browser and so the features that we want to master relate to
facilitating that interaction.

Mastering a language is more than learning its syntax. In practical/professional usage,
it also (maybe even more so) learning about an entire ecosystem. How you create
projects, install/use libraries, test, etc. We will spend as much time (if not more) on
the latter!

2

Tips for learning a new language

• Most imperative OO languages are similar, but
analogous doesn’t mean identical…

• A language likely has features that made it a
good foundation for that framework/tool
– Such features/idioms are likely heavily used and

so are important to master!
–May also be the aspects that are least familiar

• Master the mechanics of debugging, installing
libraries, etc.

A key thing to remember: Javascript is to Java as Hamburger is to Ham … Javascript
has nothing to do with Java, that was purely a marketing move (Java was very
popular/prominent at the time).

3

Learning JavaScript (in CS312)

JavaScript is an object-oriented, prototype-
based, dynamic, “brackets” language
• A pragmatic language that “evolved” (instead

of being “designed”)
• Gotchas abound
• Recent versions (ES6+) have smoothed some

rough edges (e.g., introduced “classes”)
The tools (and the notes) will help teach us the
gotchas, our goal in-class is the main ideas

This is one of the places in JS that is improving. You should always use let or const,
and preferentially use const whenever possible. Note that making an object (like an
array) a const variable doesn’t mean you can’t change its contents, instead const
refers the reference. You can’t change the value the variable refers to. Using the most
restrictive form of variable definition is the programming equivalent of defensive
driving, it reduces the ”surface area” for things to go wrong.

This is also a reminder that the examples, etc. we find online may date from earlier,
“gotcha” era. Don’t copy that outdated code! With JS we need to pay attention to the
dates on Stack Overflow, etc.

4

Gotchas? Smoothed? Variable
definition example

no declaration
– Implicitly create a new global variable

var myVariable;
– Create new variable with function (or global) scope
– Variables are hoisted to the top of their context

let myVariable;
– Create new variable with block-level scope

const myVariable;
– Create a new constant variable with block-level scope

Answer: B

Ugh. Note from the previous discussion, var ”hoists” a variable to top of the function
scope, i.e., there is only one x here and it has the value of 2. If we place `var` with
`let` we will get the more expected behavior of 2 then 1.

https://sentry.io/answers/difference-between-let-and-var-in-javascript/

5

What does the following code print?

A B C D
1
1

2
2

1
2

2
1

function mystery() {
 var x = 1;
 if (true) {
 var x = 2;
 console.log(x); // Print to screen
 }
 console.log(x);
}

We will use a variety of development tools to help us try to avoid these kinds of
gotchas (note ”help” and ”try”, no tool is perfect) . For example, ESLint is a static
analysis tool that can flag certain errors and/or bad style (like removing fuzzy “lint”
from a sweater). We will make extensive use of ESLint throughout the semester.

As example, == for equality in JS will do some surprising forms of type coercion. ===
(triple equals) behaves in a more consistent and expected way; it should be used
instead. ESLint would flag the use == in our code.

From the ESLint description:

It is considered good practice to use the type-safe equality
operators === and !== instead of their regular counterparts == and !=. The reason for
this is that == and != do type coercion which follows the rather obscure Abstract
Equality Comparison Algorithm.

You can setup your development environment to help you (i.e., link directly to rule
explanations).

For example, our lint configurations would flag the previous example with the no-var
rule, specifically “Unexpected var, use let or const instead.”

6

Tools and gotchas
$ pnpm run lint
index.js
 74:16 error Expected '===' and instead saw '==' eqeqeq
✖ 1 problem (1 error, 0 warnings)

Search for “eslint eqeqeq”

https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/

As another example, as part of that evolution, JS has many ways to declare a
function… Function expressions, and particularly the “fat arrow” flavor, tend to be
favored since they are more versatile.

These examples also highlight that in JS functions are just objects and we can do
object-related things with them, e.g., assign to variable, attach properties. This is one
of our first "key features" that is driven by/enables the interactive use in the browser.
In the latter 4 examples note we are assigning a function to a variable. We can use
that variable to call the function, e.g., `double(2)`, just as if we had created it with
that name (i.e., the first example). Functions created without a name, e.g., specifically
examples 2, 4, 5, are called anonymous functions. We commonly create and use
anonymous functions as arguments to other functions, i.e., to pass a set of
operations to be performed by other code…

7

Function declarations and anonymous
functions: So many choices…

Form Example

Function declaration function double(x) {
 return x * 2;
}

Function expression const double = function(x) {
 return x * 2;
}

Named function expression const double = function f(x) {
 return x * 2;
}

Function expression
(fat arrow)

const double = (x) => {
 return x * 2;
}

Function expression
(fat arrow, implicit return)

const double = (x) => x * 2;

double(2)

“Fat arrow”

Higher order functions are functions that take other functions as arguments.
Frequently in JS, we will use higher-order function to abstract over actions. What do
we mean by abstracting over actions? Instead of a writing a loop that prints an array,
or a function that filters data with specific (and fixed) predicate and applying that
function to arbitrary data, we are writing a generic function for iterating through an
array or filtering an array, or …These generic functions can be applied to arbitrary
data *and* implement arbitrary actions, e.g., arbitrary predicates, by supplying a
different functions as an argument. This loop, for example, iterates over a specific
array (m) and performs a specific operation (printing) <click> We could implement it
instead with `forEach`. The `forEach` method on arrays implements that part of
iterating over an array that is "the same every time". We implement different
operation by changing the function we provide to `forEach`…

We generally prefer these high-order approaches over loops. Why? Easier to reason
about and the compiler/runtime to optimize. <click>

Common operations are … All of these methods are applied to an array, i.e., the
receiver of the method call is an array of elements. The choice of method is
determined by the desired return value:
• No return value, i.e., we only care about side-effects: `forEach`
• An array of the same length with some transformation applied: `map`
• An array that contains a subset of the original items: `filter`

8

Higher-order functions: Functions that
take functions as arguments

const m = [4,6,2,7];
for (let i=0; i<m.length; i++) {
 console.log(m[i]);
}

m.forEach(function(i) {
 console.log(i);
});
// or…
m.forEach((i) => {
 console.log(i)
});

Abstract over “actions” not just values
by passing functions as arguments

Other common operations of this kind are map, filter, and reduce.

Method forEach map filter reduce

Use? No return value Transform
each item in
array

Get a subset
of an array

Summarize array
to a single value

• A single (“scalar”) value: `reduce`

8

Let’s remind ourselves what `map` is doing… How could we implement our own map
function to do the following? At the heart, what do we need? Some way of iterating
over the items and building up a new array <click>…

const map = (a, f) => {
 const result = [];
 a.forEach((item) => {
 result.push(f(item));
 });
 return result;
};

Historically we might have does something like,

for (var index = 0; index < a.length; index++) {

or now, let index. However, I am going to advocate we use forEach. Opinion
warning… Why forEach instead of a familiar for loop-based approaches? And
specifically, the modern for-of construct. … The forEach is concise, and as we will see
shortly can avoid to tricky issues with the loop variable in asynchronous code. There
are subtle and important differences between for-of and the similar but not identical

9

How would you implement
map(a, f)
such that
> const m = [4,6,7,9];
> map(m, item => item + 1);
[5, 7, 8, 10]

Suggestions for iterating over items in an
array:
a.forEach((item) => {
 // your code here
})
for (const item of a) {
 // your code here
}

Hint: Relevant array operations
const result = [];
result.push(item);

for-in. We want to use the former. Using `forEach` by default can be a form of
“defensive programming” that tries to minimize the surface area for bugs like mixing
up for-of and for-in (like “defensive driving”). We would only use a for loop if needed
to exit early (e.g., break, etc.) or use some other imperative feature of loops.

9

10

How would you implement
map(a, f)
such that
> const m = [4,6,7,9];
> map(m, item => item + 1);
[5, 7, 8, 10]

const map = (a, f) => {
 const result = [];
 a.forEach((item) => {
 result.push(f(item));
 });
 return result;
};

const map = (a, f) => {
 const result = [];
 for (const item of a) {
 result.push(f(item));
 }
 return result;
};

How is all this relevant in the browser and how do these features enable the kind of
kind of code we want to write in a web application? <click> Let's think about what
browser doing while we wait for this network request to complete?

Short answer: It is doing other stuff while waiting for the server to respond with the
data, and specifically handling other ”interactions”, e.g., the user clicking on
something else.

What that means is we need a way in the language to specify operations – code – we
want to execute in the future when some event occurs, e.g., the server sends the
data back. The design of the language and our use of it is built around this need. As
you might imagine, providing a function as an argument is a key enabler to doing so.

11

What is the browser doing with its
time?

What is happening during this time?

Wasson, Microsoft

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

The heart of JS execution is the event loop. The Event loop is constantly “spinning”
executing callbacks in response to events. So, if the user clicks a link, doing so adds a
click handler to the queue. When that handler is executed, it might launch a network
request. While that the browser is waiting for the response it is processing other
events (and the response will eventually trigger adding additional callbacks to the
queue). That is, the browser is executing actions asynchronously (i.e., the click
handler executes some unknown time in the future). Note that this is not the same as
executing actions in parallel. The event loop effectively single threaded, i.e., it
executes one handler at a time. If you have ever observed the browser hang, that is JS
code monopolizing that single thread preventing the event loop from advancing.

What exactly is a callback? A callback is a function that is executed when another
operation has completed, i.e., when a network request has completed. But it is not
just the ”next” code in the program, instead it is a function we have supplied
(typically as an argument) to be executed at some point in the future. What do we
need to make that work?
• Be able to supply functions as argument (functions as 1st class objects) – we saw

this already with our higher-order function examples
• Be able to hold on to state in a function (i.e., closures)

12

The browser is asynchronous

DOM

AJAX

Timeout

Web APIs

Callback Queue

Event Loop

[click] Recall that “functions as 1st class objects” means functions are a type in the
language, can be created during execution, stored in variables/data structures,
passed as arguments or returned. For a more formal definition you would need to
take a functional programming class.

[click] Here we see an example of creating anonymous functions using an arrow
function (including concise body). When we execute `wrapValue, we will return this
newly created function and `local` will go out of scope (it is only defined within
`wrapValue`). But the function we are creating `() => local` “closes” over the variable
local. By “close”, we mean we have access to the variables that were in scope when
the functions was defined, even if those variables are no longer in scope when it
executes.

More formally we might say: a “closure is when a function is able to remember and
access its lexical scope even when that function is executing outside its lexical scope.”

What will this print?
2
1

[click] Why? We are creating a function that closes over 1, e.g., the function shown
here, and another that closes over 2. We then print the values returned by those

13

Maintaining state in callbacks: closures

const wrapValue = (n) => { // function(n) {
 const local = n;
 return () => local; // function () { return local; }
}

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);
console.log(wrap2()); // What will print here?
console.log(wrap1()); // What will print here?

Functions as 1st class objects

Function “closes” over local

// () => 1
// () => 2

closures but starting with 2.

https://github.com/getify/You-Dont-Know-
JS/blob/master/scope%20%26%20closures/ch5.md

13

14

Why is this useful in the browser?

Wasson, Microsoft

Presumably, we know what we
want do with the response when
we define/launch the request. Closure helps us easily maintain that

state until the response is available
without keeping those values in scope.

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

Context: setTimeout returns immediately and then invokes the callback after delay in
milliseconds.

Answer: B

Although the second print command is "later" in the code, it executes first because
the callback does not execute until after 100ms has elapsed. In the meantime,
execution moves onto the next line, printing of "First?” The time elapsed won’t
exactly be 100. It will be larger but reasonably close. Why? The callback goes into the
queue after the timeout but may not be executed exactly at that moment. The
callback function closes over the variable current which was set to the time just
before calling setTimeout.

15

What does the following code print?

A B C D
First? First?

Time elapsed (ms): 100
Time elapsed (ms): 100
First?

None
of the
above

let current=Date.now(); // Time in ms since epoch

// setTimeout(callback, delay[,param1[,param2…]])
// setTimeout returns immediately, and then invokes the
// callback after delay in milliseconds.
setTimeout(() => {
 console.log("Time elapsed (ms): " + (Date.now() - current));
}, 100);

console.log("First?");

Answer: D

What happened? The implication of our discussion was that the callback function
"closed" over current. And that is the case, but it closes over the variable not
the value of that variable. Here the same variable is in scope when we create the
closure and when we modify current after setTimeout. Most of the situations in
which we use closures we are creating new variables (e.g., as function arguments)
and thus it appears we are closing over both the variable and the current value. But in
reality, we only close over the variable.

16

What does the following code print?
let current=Date.now(); // Time in ms since epoch

// setTimeout(callback, delay[,param1[,param2…]]) delay in ms
setTimeout(() => {
 console.log("Time elapsed (ms): " + (Date.now() - current));
}, 100);

current = new Date("11 Feb 2019");
console.log("First?");

Function “closes” over current
variable which is still in scope after
setTimeout

A B C D
First? First?

Time elapsed (ms): 100
Time elapsed (ms): 100
First?

None
of the
above

Answer: B

For example, if we rewrote that code as follows, we would get B (as we would
expect). Here we are closing over current as the argument past, when we create the
callback. That is behind the scenes we are doing something like past=current and
then closing over past.

A simpler way to implement this in practice would be to use the additional arguments
to setTimeout. It closes over those arguments and pass them to the supplied
callback.

setTimeout((past) => {
 console.log("Time elapsed (ms): " + (Date.now() -
past))
}, 100, current);

17

What does the following code print?

A B C D
First?
Time elapsed (ms): 31592310870

First?
Time elapsed (ms): 100

Time elapsed (ms): 100
First?

None of the
above

let current=Date.now(); // Time in ms since epoch

// setTimeout(callback, delay[,param1[,param2…]]) delay in ms
setTimeout(((past) => (() => {
 console.log("Time elapsed (ms): " + (Date.now() - past))
}))(current), 100);

current = new Date("11 Feb 2019");
console.log("First?");

This is the equivalent code to what we saw before, but likely a little easier to reason
about. Note that the role of createCallback is exactly that. We are creating a callback
that closes over the past parameter. Thus, it is no affected by the reassignment to
current below.

18

What did we actually do there…
let current=Date.now(); // Time in ms since epoch

// Create callback provided to setTimeout
const createCallback = (past) => {
 return () => {
 console.log("Time elapsed (ms): " + (Date.now() - past))
 };
};
const callback = createCallback(current);

setTimeout(callback, 100);
current = new Date("11 Feb 2019");
console.log("First?");

Surprised? What happened? Recall we close over variables not values. Thus, all the
callbacks we create close over the same `idx` variable! We don’t have the same issue
with `val`, because we each iteration of the loop is defining a new `val` variable!
Could we improve this?

We could make the first loop look like the second, e.g., for (let i = 0; i < funcs.length;
i++), thus closing over a new variable `i` each iteration. But even that is subtle…
defining a variable with let in a for loop is a special case, it behaves as though it was
defined in the loop body, thus each iteration is a new variable, but initialized with the
value from the previous iteration. Ugh. How could our functional tools, e.g., map,
make this clearer? That first loop is really transforming an array into another array. A
good tool for map. We want to the value and its index. Map supports that through
additional optional arguments to the function argument, e.g., …

const vals = [4, 5, 6];
const funcs = vals.map((val, idx) => {
 return () => console.log(`Value ${val}@${idx}`);
});
funcs.forEach(func => func());

Should we just know we can use map with those additional arguments. No. Not
without looking at the documentation. Instead, we want to cultivate the sense that

19

What will this print?
const vals = [4, 5, 6];
const funcs = [];
let idx = 0;
for (const val of vals) {
 funcs.push(() => {
 // `` creates string by inserting expressions in ${}
 console.log(`Value ${val}@${idx}`);
 });
 idx++; // idx = idx + 1
}
for (let i = 0; i < funcs.length; i++) {
 funcs[i]();
}

> …
Value 4@3
Value 5@3
Value 6@3

// Alternative
const vals = [4, 5, 6];
const funcs = vals.map((val, idx) => {
 return () => console.log(`Value ${val}@${idx}`);
});
funcs.forEach(func => func());

such a thing may be possible (after all it is common to need a value and its index) and
so we should look to see if there are relevant tools in JS for that task, instead of
immediately turning to a loop because that is how we would do it in another
language.

19

From Dan Abramov (one of the key React developers, and a name we will encounter
repeatedly)

“Closures are often avoided because it’s hard to think about a value that can be
mutated over time.”

That is exactly the issue we saw in the 2nd problem. We were closing over a mutable
variable. Closures are a very powerful tool and fundamental part of working with the
JavaScript event loop. We can’t really avoid them. While we want to understand what
is going on the second example, we would rather not create that kind of tricky
situation in the first place! Returning to our defensive driving analogy, let’s proactively
make choices to minimize the chance something goes awry. When we close over
constant values, either ”const” values or arguments that behave like const references,
we will find closures are easier to reason about.

https://overreacted.io/how-are-function-components-different-from-classes/

20

Your take on closures?

“Closures are often avoided because it’s hard to think
about a value that can be mutated over time.”

-Dan Abramov

That is exactly the issue in the 2nd version of the
problem!

When we close over constant variables, e.g., const
variables or parameters that won’t change, - the typical
case - then closures are more straightforward (and a
key tool when working with JS).

21

The rest of JS?

• We are not going to spend a lot of time “just” learning
JavaScript
Today we focused on features that support interactive
applications in the browser
In the future, we will talk more about asynchronous
execution (Promises, the async/await keywords)

• We will pick up the rest “along the way”
Check out the links on the website for common, but perhaps
unfamiliar, syntax
Keep an eye on techniques used in assignments, examples
Pay attention to messages from ESLint (really read the rule
documentation and its motivation)

