
I suspect many of our complaints point to specific design/technical issues. But the
root cause of those problems is likely not technical, but the outcome of problema<c
team structures and processes…

So?ware development involves programming, but it is not just programming. And our
experiences bear that out. But how is it different?

1

Using the “ques-on” feature of go/cs312-inclass,
submit a comment on the following:

Think about an app or website that you have used
in the past year (that is not Banner ☹):
– What is a feature that really impressed you, and why?
– Or, what was a challenge working with it, and why?

In his 2020 Eckert-Mauchly Award Lecture in a response to a ques<on about what
educators should focus on, Luiz said the following:

“[…] if I look at the the folks that arrived at Google I think there are two things that I
like to emphasize. One of them: being a good programmer is really important […] The
other thing that I think is important to recognize is a non-technical issue is that unlike
you know when I entered the field the kinds of problems we solve today are at the
degree of complexity and scale that a
single superstar is much less likely to really move the needle […]”.

“[…] we need to educate students to think of themselves as a team, and evaluate
their performance not as much by their individual prowess, but in what ways their
addi<on will make the team beXer. And I see that every day at Google, where the
difference between a very good programmer and the “ninja” programmer in a very
complex environment, where tens or hundreds of people need to work on the same
project - the difference between those two is not their ability to program or their
technical prowess, primarily, the difference between those two is how they work with
their teams.[…]”

hXps://www.youtube.com/watch?v=Lv_eZX99lUU&t=2257s

2

Luiz André Barroso (Google VP of
Engineering) on SW development:
“It’s a team sport…”

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license

2

David Parnas (one of the early pioneers of this field) identified the following quote as
the answer to this question… The “multi-person” aspect echoes the Barroso’s point.
But what is “multi-version”?

Parnas further writes: “The focus of computer education has long been on algorithm
design. When people teach programming, it is assumed that a program will be
written by a single person. Moreover, they often assume that the ultimate user of the
program will be the programmer. No time was spent on the possible need for several
versions of the program and the consequent need to “design for change”. It was
assumed that since software was not hardware, a program could not be hard to
change.”

”mult-version” recognizes that programs are not static, they have multiple, perhaps
many thousands of versions (some of which may coexist). And thus, we need to
create programs with that change in mind.

He goes on: “Nothing is taught about the extra work needed if your program will be
used by others or must be part of a multi-person project.” I suspect that sentence
might capture your thoughts on about some (maybe all?) of your classes. It highlights
one of the key aspect of this class that makes it different. Our goal is to specifically
learn and practice techniques for working in a team to build ”multi-version” software
that can evolve with the needs of its users.

3

How is SW engineering/development
different from “programming”?

[SW engineering is] “The mul$-person
development of mul$-version programs”
– Brian Randell

Parnas, D.L. (2011). So2ware Engineering: Mul<-person Development of Mul<-version Programs. In: Jones,
C.B., Lloyd, J.L. (eds) Dependable and Historic Compu<ng. Lecture Notes in Computer Science, vol 6875.

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license

3

Notice that most of these learning goals are about the process of SW development.
Not specifically about web application development. Build a web application will be
the specific domain in which we practice those skills. It is a means to an end, not the
end itself.

4

What are you hoping to get out this
class?

CS312 learning goals:
1. Describe and employ modern methodologies for

managing SW development
2. Use tools and services that support those processes, such

as version control, GitHub, con<nuous integra<on, etc.
3. Describe and employ SW development principles,

paXerns and best-prac<ces, such as test-driven
development (TDD), DevOps, etc.

4. Describe, evaluate and employ technologies for full stack
web development and single page web applica<ons (SPAs)

5. Complete a large so?ware development project as part of
a team

There is a lot on here… Our goal isn’t to review these in detail. We will return this
paper and this ques<on many <mes. I want to highlight what is on here, things like
how to be a great teammate, and what is not on here… specific technologies, or the
ability to pound energy drinks and code all night. Many of those stereotypical
aXributes of “10X” programmers, “rockstars”, “ninjas”, or whatever you may call them
are not actually that important. These are the aXributes I want us to develop as part
of this class.

5

What makes a great so-ware engineer?

Li, Paul & Ko, Andrew & Zhu, Jiamin. (2015). What Makes a Great So2ware Engineer?. ICSE 2015. Synthesizes
59 interviews with Microso2 SWEs.

53 Attributes Of Great Software Engineers,
Consisting Of Internal And External Attributes

Learning new tools is lifetime project.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

6

Top 10 ways to have a bad time
10. Jump right into coding, that’s where learning happens
9. Don’t do the reading
8. Work alone, don’t help your classmates
7. Resist learning new tools/techniques
6. Ignore advice (instructors, peers, CS169)
5. Focus on passing tests vs. learning
4. Ignore the honor code
3. MulQtask in class, while coding, etc.
2. AI can handle that for me
1. “Process” just wastes valuable coding Qme

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

7

Context: Evolving ecosystem

Shrink wrapped ⇒ So>ware-as-a-Service
Monolithic ⇒ Services and serverless
On-premise ⇒ Cloud

SaaS tools are now so integral to how we work we don't really think about it (till we
have to deal with Internet service in rural VT…), but it wasn't/isn't always this way.

What about mobile native applications? A counter example for this trend?
+ Use HW features unavailable in HTML5
+ May be faster…or not (many just HTML5 apps in native “container”)
+ Your brand is on user’s home screen (though can get this in other ways)
- Harder to maintain with multiple platforms to support
- Upgrades now once again user’s problem (although app stores mitigate some of

that…)

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

8

Shrink wrapped soMware (SWS) ⇒
SoMware-as-a-Service (SaaS)

SWS
Client-specific binaries that
must work in many HW/SW
environments
+ Rich user experience
- Hard to maintain, with
extensive compa<bility tes<ng
required

SaaS
Online client-server model
+ One copy of SW, one HW
environment (controlled by
developers)
+ Easy to release updates
+ Easier to enable user
collabora<on
- Limited by online latency,
capabili<es of browser

What about mobile native applications?

SOA: An architecture that focuses on discrete services instead of a “monolithic”
design (where components are part of the same application and can often directly
access all of the application’s data).

https://courses.cs.washington.edu/courses/cse452/23wi/papers/yegge-platform-
rant.html

9

Achieving modularity in SaaS?
Modularity encapsulates complexity into (rela<vely)
independent units
One approach is Service-Oriented Architecture (SOA)
Most famously? expressed in 2002 Bezos mandate to
Amazon*

• All teams will henceforth expose their data and func5onality
through service interfaces.

• Teams must communicate with each other through these
interfaces.

• There will be no other form of interprocess communica5on
allowed…

• All service interfaces, without excep5on, must be designed from
the ground up to be externalizable…

• Anyone who doesn’t do this will be fired.

*Steve Yegge 2011 Blog Post

What do we mean by services and service-oriented architecture (SOA) (also
some<mes called microservices). As described in Bezos mandate, the system is
decomposed into independent services. Each can be developed/deployed
independently. In the ideal case the complexity of the system only "scales" with the
most complex modules (not the system as a whole). In prac<ce that ideal is not
always achievable. And as you might image, this approach introduces its own
challenges,. So why this mandate? In part it was to turn Amazon into a plaworm, not
just an ”applica<on”, and to do so they were going to “eat their own dogfood”, i.e.,
use their internal tools like a customer.

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

10

Monolithic ⇒ MulAple services?

Monolithic Services

Student
Info

Course
Info

Course
Registration

Backend

Frontend

Course
Registra;on
Service

Student
Info
Service

Course
Info
Service

Answe: A.

Microservices can trade applica<on complexity for system complexity. A
microservice-based architecture can be more difficult to design and maintain at a
system level, but each individual component of the system is greatly simplified.
(hXps://www.sitepen.com/blog/2017/02/20/microservices-and-spas/)

Absolutes rarely work (modera<on in all things). Services are not always appropriate
and the trends towards SOA has in some cases swung back towards more monolithic
applica<ons. Why? Decomposing systems too much can introduce addi<onal
overhead and fric<on. And o?en that decomposi<on is not a func<on of separate
func<onality, but o?en separate parts of an organiza<on (i.e., different teams). For
example, part of Amazon Prime described how transforming their applica<on back to
a more monolithic approach substan<ally reduced costs:
hXps://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-
audio-video-monitoring-service-and-reducing-costs-by-90

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license

11

Which of the following is a
disadvantage of services-oriented-
architecture (SOA) compared to a
monolithic design? SOA:

A. May be harder to debug & tune
B. Results in lower developer productivity
C. Complexity is a poor match for small teams
D. Is more expensive to deploy than monolithic,

because more hardware is needed to handle the
same workload

That trend back to monoliths, is sometimes only monolithic in a sense. A common
approach today is not to decompose an application into multiple discrete services,
but to build an application using multiple external services. That is use a separate
“third party” service for authentication, for images, for real-time chat, etc. An
extreme version of this are “serverless” architectures – a terrible name – in which the
backend code you write is not stateful. Instead, it is interacting with multiple stateful
services… but more on that in the future.

12

Monolithic ⇒ “Backend” services?

Monolithic “Backend” Services

Student
Info

Course
Info

Course
Registration

Backend

Frontend

Student
Info

Course
Info

Course
Registra;on

Auth

Frontend

DB

Below a certain scale, it is hard to compete on price with experienced data center
operators building warehouse-scale computers. Economies of scale and relentless
optimization pushed down cost of largest datacenters many fold (estimates of 3-8⨉).
Remember when thinking about cost, it is not just the cost to purchase the machine,
but the cost to manage the space, power the machine, maintain it, etc. The actual
hardware itself is only a part…

The barrier to entry is now very low (don’t need to buy HW up front) and individual
developers have access to same computing power as the big players. Infrastructure-
as-a-service (IaaS), e.g., the ”original” AWS, are increasingly becoming platform-as-a-
services, PaaS. With a PaaS, the developer connects many “higher-level” services
instead of provisioning the underlying servers, storage, etc.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

14

SaaS’ 3 demands on infrastructure

1. Communica$on: Customers must be to
interact with service

2. Scalability: Respond to fluctuaGons in
demand or new services adding users rapidly

3. Dependability: Service & communicaGon
available 24x7

Cloud providers can offer all three on a pay-as-
you-go basis (utility) at hard to match prices

The “So?ware Crisis” was a term to described the ”difficul<es in producing high-
quality so?ware on <me and within budget”. As computers became more powerful
the complexity of problems that people could tackle also grew (but not ”linearly”),
exposing limita<ons in development processes. In his 1972 Turing Award lecture,
Edsger Dijkstra’s (a par<cipant in the 1968 conference) described the so?ware crisis
as:

The major cause of the so?ware crisis is that the machines have become
several orders of magnitude more powerful! To put it quite bluntly: as long as
there were no machines, programming was no problem at all; when we had a
few weak computers, programming became a mild problem, and now we
have gigan<c computers, programming has become an equally gigan<c
problem.

hXps://en.wikipedia.org/wiki/So?ware_crisis
Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license

15

Context: AcceleraAng change

• What makes software different than other
engineering disciplines?
Change is easier (easier than for HW…)

• Easier frequently mistaken for easy
“Software Engineering” term arose from a 1968
NATO conference on the “Software Crisis”

• Current trends only increase expectations and
the rate of change

How can be build so?ware for this world…

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license

16

Plan & Document ⇒ Agile

“Plan-and-Document”:
1. Before coding, the project manager makes plan
2. Write detailed documentaLon for all phases of

the plan
3. Progress measured against the plan
4. Changes to project must be reflected first in

changes to documentaLon and the plan

ImplementaGons: Waterfall, Spiral, …

Waterfall: Sequential phases of project (like a cascading waterfall).

Spiral: ”Spiralling” iterations of:
Determine objectives and contraints
Evaluate alternatives and identify and resolve risks
Develop and verify prototype
Plan next iterations

Spiral could be described as Waterfall with prototyping. Both involve a lot of planning
and long phase changes (i.e., iterations can be long)

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

17

Waterfall

Requirements

Design

Development

Tes;ng

Opera;ons

Waterfall process:
Sequential phases

Advantages:
• Errors are caught early (and more cheaply) before manifes<ng

in next phase
• Extensive documenta<on is deliverable (can facilitate

maintenance)

Answer: B

P&D assumes a phase is done once we move on. But we can imagine that during
development, testing, deployment, etc. we observe we need to change the design.
Revisiting the design process can be challenging at that point in these processes.

Change doesn’t mean we made mistake. There are many reasons for change. We
likely had incomplete information, or the needs of our users have evolved, or new
technologies are available… Or probably all of those things.

In the software world change is not a problem to be fixed, but a fact to be coped
with. That is, we want design processes with change in mind.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

18

What is a major challenge faced by
P&D processes such as Waterfall?

A. Careful planning, then measuring progress
against the plan

B. Reacting to changes in a particular phase
after that phase is done

C. Using prototypes to get customer feedback

hXp://agilemanifesto.org

19

Agile Manifesto (2001)

We are uncovering better ways of developing software by
doing it and helping others do it.
Through this work we have come to value:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.

hDp://agilemanifesto.org

http://agilemanifesto.org/

Recall Waterfall features sequential phases (like a cascading waterfall). In contrast
Agile, implements multiple iterations of those lifecycles in short repeated cycles.
Embraces change as a fact of life: continuous improvement instead of a single
planning planning phase. Team continuously improves working but incomplete
prototype until customer satisfied (with customer feedback after each 1-2 week
iteration).

Note that when we talk about agile, we are talking as a project management
“philosophy” (like P&D is a description of more than just Waterfall). Scrum, Extreme
Programming (XP) are specific methodologies guided by the Agile philosophy.

In class we will implement one version of agile, in a way that is tailored to a class. Our
approach is not the only one (or necessarily the best – a matter of opinion) or even
appropriate for all applications/industries. But it will give us hands-on experience
with these approaches to project management.

Agile is also a ”brand” with consultants, etc. We are really aiming to be “lowercase a”
agile, that is demonstrate agility, as opposed to the “capital A” Agile, the formal
process that someone might want to sell you.

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license.

20

Plan & Document ⇒ Agile

Dilbert 11/26/17

Requirements

Design

Development

Tes;ng

Operations

Waterfall process:
Sequen<al phases

Agile: All lifecycle phases
in repeated short cycles

The front-end is typically the por<on of the applica<on the user interacts with
directly (and in our case runs in the browser), while the back-end is the por<on of the
applica<on that provides resources (data) to the front-end, e.g., implements
persistent datastores, business logic, and runs servers controlled by developer.

"Being a Full-Stack Developer doesn't mean that you have necessarily mastered
everything required to work with the front-end or back-end, but it means that you
are able to work on both sides and understand what is going on when building an
applica<on.”
[1](hXps://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-
2017-5c3c08a1600c)

“DevOps essen<ally extends the con<nuous development goals of the Agile
movement to con<nuous integra<on and con<nuous delivery.”
hXps://www.ansible.com/blog/confessions-of-a-full-stack-devop
hXps://newrelic.com/devops/what-is-devops

21

“Full-Stack”, “DevOps” and other
buzzwords…

DevOps? Cross-funcQonal (no more silos) teams that:
• Apply “development” pracQces to operaQons, e.g.,

infrastructure as code
• Automate everything
• Integrate operaQons into developer role

StackOverflow 2017 developer survey

"A Full-Stack Web Developer is
someone who is able to work
on both the front-end and back-
end por?ons of an
applica?on.”[1]

https://newrelic.com/devops/continuous-integration
https://insights.stackoverflow.com/survey/2017
https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-2017-5c3c08a1600c

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

22

Summarizing our (the) landscape
• SW (can) evolve quickly to match user needs
• But doing so requires a development process that

embraces change
• agile is a process that embraces change (as

opposed to plan & document, etc.)
• SaaS is an ideal domain for agile processes
• Cloud gives everyone access to scalable HW and

services for implemen-ng SaaS
• Web applica-ons are natural consumers of these

services

Synergis<c methods (deliver so?ware as a service), tools (frameworks, etc.) and
processes

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

23

So?ware as a
Service (SaaS)

agile
Development

Highly productive
frameworks &

tools

Users can quickly use
latest agile itera<on

Frameworks & tools minimize obstacles to agile
SW development

Frameworks match
SaaS needs

Answer: D.

We will do a lot of ”greenfield” development in class but that is not necessarily true
of your future tasks. A lot of code has already been wriXen, and SW maintenance,
which isn’t just fixing bugs, but also adding new features to exis<ng SW, is ~60% of
SW costs. Working with “legacy code” maXers. Part of what we will learn is how to
write code that is maintainable, and by virtue of working with large teams, how to
work with code others have wriXen. Whenever you are about to disregard legacy SW,
remember that legacy code is successful code, otherwise it wouldn’t s<ll be around.

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

24

Which aspect of the software lifecycle
consumes the most resources?
A. Design
B. Development
C. Testing/debugging
D. Maintenance

The only people that can see the Statue of Liberty’s hair are those that climb up the
torch. Yet the ar<st(s) included hair anyway!

Adapted from Armando Fox and David PaXerson (Berkeley cs169) under CC-BY-SA-NC
license.

25

BeauAful code

Beautiful code:
• Meets customer needs
• Easy to evolve

The “cruft” that makes
enhancements expensive
is the technical debt
created by doing the easy
thing, not the “Right
Thing”

earthcam.com

“All programming requires is a crea<ve mind and the ability to organize your
thoughts. If you can visualize a system, you can probably implement it in a computer
program. This means that the greatest limita<on in wri<ng so?ware is our ability to
understand the systems we are crea<ng.”

Complexity is our enemy. The tools and processes we will learn about are designed to
help minimize and/or overcome complexity. But tools alone are not enough. We must
design so?ware to be simple or at least simpler. How can we do so? 1) Ac<vely try at
each moment to make our code simpler and more obvious, 2) encapsulate the
complexity we can’t eliminate. We will see and do both this semester.

[click]

We have all done this (I am doubwul of anyone who says otherwise…) And the
structure of most courses actually encourages “tac<cal programming”. Most
programming assignments are “green field” (you start from scratch), there are o?en
hard deadlines, and you rarely need to use the code you write in the future, so there
is minimal cost to introducing complexity.

“Almost every so?ware development organiza<on has at least one developer who
takes tac<cal programming to the extreme: a tac<cal tornado. The tac<cal tornado is
a prolific programmer who pumps out code far faster than others but works in a

26

Tactical vs. strategic programming

• Tactical: The focus is getting something, anything,
working
“You tell yourself that it’s OK to add a bit of complexity or
introduce a small kludge or two, if that allows the current
task to be completed more quickly. This is how systems
become complicated.”

• Strategic: Working code is not enough
“It’s not acceptable to introduce unnecessary complexities in
order to finish your current task faster, […] Most of the code
in any system is written by extending the existing code base,
so your most important job as a developer is to facilitate
those future extensions.”

Ousterhout, John K. . A Philosophy of So2ware Design

totally tac<cal fashion. When it comes to implemen<ng a quick feature, nobody gets
it done faster than the tac<cal tornado. In some organiza<ons, management treats
tac<cal tornadoes as heroes. However, tac<cal tornadoes leave behind a wake of
destruc<on. They are rarely considered heroes by the engineers who must work with
their code in the future. Typically, other engineers must clean up the messes le?
behind by the tac<cal tornado, which makes it appear that those engineers (who are
the real heroes) are making slower progress than the tac<cal tornado.”

There are no absolutes – modera<on in all things. We don’t to spend so much <me
coming up the “best” design that we don’t accomplish anything. We should think
about this from an investment perspec<ve. We are con<nually making small
investment (say 10-20% of our <me) make the system beXer. This may be proac<ve –
spending a liXle more <me up front to improve our design, or reac<ve – fixing a
design problem instead of working around it.

Ousterhout, John K. . A Philosophy of So?ware Design, 2nd Edi<on

26

“Of the three manifesta<ons of complexity, unknown unknowns are the worst. An
unknown unknown means that there is something you need to know, but there is no
way for you to find out what it is, or even whether there is an issue. You won’t find
out about it un<l bugs appear a?er you make a change. Change amplifica<on (change
is hard) is annoying, but as long as it is clear which code needs to be modified, the
system will work once the change has been completed. Similarly, a high cogni<ve load
will increase the cost of a change, but if it is clear which informa<on to read, the
change is s<ll likely to be correct. With unknown unknowns, it is unclear what to do
or whether a proposed solu<on will even work.”

More generally we will see this warning signs in slightly different forms – different
people use different descrip<ons, but there are crosscu�ng ideas about the difficulty
of making changes/improvements.

Ousterhout, John K. . A Philosophy of So?ware Design, 2nd

27

Signs complexity is winning

1. Change is hard: Seemingly simple changes
require modifying code in many places

2. High cogniGve load: Lots of work to figure out
how to complete your task correctly

3. Unknown unknowns: Not clear what you
need to change to complete your task

Ousterhout, John K. . A Philosophy of Software Design,

The workflow we will implement has some key “technical” steps, but also some ”non-
technical” steps that are equally important for ensuring that we develop the right
software, i.e., software that solves the user’s actual problem, not just software that
works correctly. Unlike a class assignment, where there is (often) a very clear task and
problem to solve, in the project (and any real-world situation) you will need to figure
out the problem too! That is figure out what you should be building!

Adapted from Armando Fox and David Patterson (Berkeley cs169) under CC-BY-SA-NC
license

28

Talk to customer

Lo-fi mockup

User stories

Behavior-driven
design

Test-driven
development

Deploy

Here are some of the tools and technologies we will use. These specific tools and
technologies are a means to an end. I care more that you learn the “why” for these
tools than the ”how” of any particular technology or framework.

This class has a lot of moving parts. And I have made many choices for tools,
techniques, methodologies. In some cases, it is a choice among many similar
alternatives where there is no "right" answer. I don't want you to get bogged down in
questions of whether any particular tool or technology is the best in a technical or
other sense (we often are optimizing for the best class experience, not the best tool).
You may be more familiar with the alternatives. As we will talk about it in a moment, I
ask you to "do the class" with the class tools. Doing so will make your teams more
efficient and be opportunity for you to learn new tools/techniques. At the same time,
if our approach seems to conflict with best practices, don't hesitate to ask me about
it - we will both get a lot out of the ensuing discussion.

29

Technology

HTML
JavaScript
CSS
Frameworks
Databases

Tools

VCS
Testing frameworks
Linter
Continuous

Integration (CI)
PaaS & IaaS

Process

Agile (Scrum)
Test-driven

development (TDD)
DevOps
Design patterns

One goal of this course is to prac<ce effec<ve SW development methodologies. That
is the process itself is important. Our goal is to prac<ce strategic programming, i.e.,
working code is not our only goal. Recall that perfect prac<ce makes perfect. I want
you to ”slow down” and make those investments and the structure of the course is
intended to enable you to do so!

We have a wide variety of backgrounds:
• Some of you have learned these technologies in/for another class
• Some of you have used these technologies in an internship or summer research,

and
• Some of you have never touched these technologies before…

In some of these aspects, CS312 will be similar to your future working environments
but more challenging (a company doesn’t usually create a team of composed only of
new developers). To overcome these challenges, I expect you to:

* Be responsible for independently picking up the details of unfamiliar tools or
technologies.
* Put in the effort to make sure you don't get le? behind. Use the resources on the
course page (and others) and make sure to ask me and others for help when you
need it. Don't be the teammate that can't contribute because you don't know what is
going on!

30

What I ask of you

“Do the class”
• Commit to the CS312 tools and processes

Perfect practice makes perfect

• Be a good great teammate
Be responsible for your learning, don’t get left
behind
Use your knowledge to make your team better

If you have prior experience, I expect you to:

* Use your knowledge to actively make your team better, not to sit back in judgement
or frustration. Recall the often the best way to learn is to teach (e.g., "see one, do
one, teach one"); you will get more out of the class if you actively engage with all of
your classmates, including those with less experience.
* Understand you can't do it alone. It may seem like you can do the project better or
faster by yourself, but the end product will actually be worse if the whole team can't
(or doesn't) contribute.

30

It will feel like the course content only gets you to to step 4, but the project asks for
step 5… and that is true to some extent (but also o?en self-imposed). Our goal is to
be simultaneously realis<c and op<mis<c about what comes next. Are we going to
recreate an applica<on that was developed by 100s of engineers over years in just 6
weeks? No. Are we going to build a more impressive applica<on than we expect? Yes!
We do so by not trying to become experts in everything in a day or a week or
semester (i.e., add all the “small details” at once) but by focusing on learning one
thing at <me (i.e., learning to draw the mane, then learning to draw the tail…) and
doing that repeatedly. Amazing stuff will happen!

That learning will o?en be independent. In part, because your par<cular project will
need specific techniques/technologies that we couldn’t possibly cover. That is true for
your future endeavors too (regardless of your path). The chance the you took a class
in the exact thing you end up working on is very slim (it may not exist yet!). You will
have to learn it. And that is in part what we are trying to prac<ce here.

31

As we noted before, being a great teammate is a skill in its own right that can be
developed and honed (like any other skill). I wanted to highlight the observations
about teamwork from the Li et al. paper.

32

Being a great teammate

“No matter how good is our code, if our partner [sic] cannot give it a good
product for us then we cannot share our greatness to the whole world. A lot
of time I see our support to our client is not very well [sic]… we should have
a good result combined together.” -Senior SDE, Phone

Many informants said that great engineers made shared
success bidirectional between managers and individual
contributors. Managers needed to put engineers in positions to
succeed; great engineers needed to engage management to
facilitate mutual success. Great engineers often had better
understandings of the details; managers often had a broader
perspective of the situation:
“It's a two-way communication… there's something going to happen down the

road, this piece of code or this feature going to have some issues, need to make
your manager aware.” -SDE2, Phone

This attribute likely helped to avoid dysfunctional ‘time
famine’ situations as discussed by Perlow [31], where crises
arise in teams due to a lack of shared understanding about status
and objectives.

3)!Creates A Safe Haven
Many informants described great engineers as creating a safe

haven where other engineers can learn and improve from
mistakes and situations without negative consequences. Usually
associated with leaders, informants felt that if engineers are
afraid of mistakes, then their growth would slow:
“Chasing after a career path or something… you will deliver your best

performance if you are not insecure… One of the challenges as a manager
people face these days is retaining talent because there is so much attrition
all over.” -Senior Dev Lead, Ad Platform

Informants also saw the lack of this attribute as a major
contributing factor for talent loss. Informants did not want to
work in environments where they felt insecure, and often
avoided those teams/organizations:
“If you make one mistake or don’t know something and you’re sort of dinged

by that… and you’re only judged if you say everything’s perfect even if it
isn’t… Then you start to have this really kind of I think dysfunctional
environment set up where everybody just doesn’t say the truth.” - Principal
Dev Manager, Windows Services

TABLE 4. GREAT SOFTWARE ENGINEERS’ ENGAGEMENT WITH TEAMMATES. ATTRIBUTES DISCUSSED IN DETAIL ARE IN BOLD.
Attribute and description Excerpt that capture interviewees’ sentiment

Creates shared context—molding another person’s
understanding of the situation while tailoring the
message to be relevant and comprehensible to the
other person.

“Most compellingly relate the value of that abstraction as it goes to non-abstract to very abstract to
each person… empathize with your audience... get them to get it.” -SDE2, Windows

Creates shared success—enabling success for everyone
involved, possibly involving personal compromises.

“Find the common good in a solution… express here’s the value for you... It’s a win-win situation.”
-Senior Dev Lead, Windows

Creates a safe haven—creating a safe setting where
engineers can learn and improve from mistakes and
situations without negative consequences.

“If you learn something from a failure, that’s a wonderful sort of thing… [but not] If you’re afraid
of getting smacked upside the head… encourage the people to experiment, possibly succeed,
possibly fail”. -Senior SDE, Office

Honest—truthful (i.e. no sugar coating or spinning the
situation for their own benefit).

“When you do make mistakes, you've got admit you made a mistake. If you try to cover up or kind of
downplayed mistake, everybody will see it, it's super obvious. It affects your effectiveness.” -
Partner Dev Manager, Corp Dev

Integrates contexts—integrating different contexts
together into their own understanding, including noticing
and asking questions about gaps and incongruities.

“Disparate ideas and pieces of information… put pieces together… asking good questions... organize
your thoughts that will help you make those connections.” -Principal Dev Lead, Dynamics

Well-mannered—treating others with respect, not
obnoxious about their title, accolades, or knowledge.

“Smart but not cocky… He’s the one who knows all the information. He never comes across that
way… [does not] make the other people seem like, ‘Oh, I feel so stupid.’ ” -Senior SDE, Windows
Services

Acquires context—effectively acquiring contexts and
knowledge from others.

“To get the software to work… each things need to be integrate together [sic]... learn from others and
you need to know the things others are working on.” -SDE2, Corp Dev

Not making it personal—divorcing oneself from personal
feelings and biases.

“You can have a very open and heated discussions. But it is all very professional; none of this is ever
taken personally.” -Principal Dev Lead, Server & Tools

Mentoring—instilling knowledge to others; helping others
improve.

“He’s seen stuff that you haven’t seen yet, and he’s willing to share his knowledge… Let’s spread
some of that good knowledge around.” -Senior SDE, Office

Raises challenges—pushing others to action, expanding
the team’s limits.

“…Shared confidence: so it's like he's done it and so you can do it… spark your imagination and your
sense of self confidence for you to boot strap yourself up.” -SDE2, Windows

Walking-the-walk—acting as the exemplar (e.g. using
good practices) for others to follow.

“I would like to model myself against that behavior (of a great software engineer)… it inspires me to
do the same thing.” -Senior Dev Lead, Ad Platform

Manages expectations—setting clear expectations,
updating them, and then delivering on them.

“Your leads, your managers … setting expectations, they know what you’re going to do, you do it.” -
SDE2, Servers and Tools

Has a good reputation—having the belief, respect, and
confidence of others to make good decisions.

“Build up that reputation and that trust through your years… worth of good deeds essentially, so that
when you make that recommendation, they go, I am going to listen to him.” -Principal Dev Manager,
Windows Services

Stands their ground—firm against outside pressure (e.g.
management), when appropriate, based on sound
principles

“He will say no, if he has to. If what they're asking him to do jeopardizes something else… stand up
and be brave about it.” - Principle SDE, Windows

Trading favors—creating personal equity with others. “Returning a favor here and there… above and beyond to help somebody else out and then somewhere
down the road that person has that extra good will to come help you out.” -Senior Dev Lead,
Windows

Personable—cool people that one would engage with in a
non-work setting.

“One of the characteristics I look for in every person that I get… Can I have a beer with this guy?
…but they’re very, very stubborn and you know that you can only put them on one thing and that’s
it.” - SDE2, Servers and Tools

Asks for help—finding and engaging others with needed
knowledge and information.

“He does his homework and anything that he doesn't know… he goes and finds a person that does
know. He doesn't try to know it all himself.”-Principal SDE, Windows

• Creates shared context: Molding another person’s understanding of the situation
while tailoring the message to be relevant and comprehensible to the other person.

• Creates shared success: Enabling success for everyone involved, possibly involving
personal compromises.

• Creates a safe haven: Creating a safe setting where engineers can learn and
improve from mistakes and situations without negative consequences.

• Honest: Truthful (i.e., no sugar coating or spinning the situation for their own
benefit).

Li, Paul & Ko, Andrew & Zhu, Jiamin. (2015). What Makes a Great Software Engineer?. ICSE 2015. Synthesizes
59 interviews with experienced Microsoft SWEs.

Specification/Satisfaction grading. No “points” or partial credit. Everything is graded
on a form of satisfactory/not yet satisfactory. All elements have an opportunity to
receive feedback and resubmit (for programming assignments, project) or retake a
similar problem (exams). Final grade is determined by the bundles described in the
syllabus. Why? A grade should reflect your demonstrated understanding of the
material at the end of the course. Assessing your work is a necessary but imperfect
proxy for assessing understanding. My goal and responsibility is to create the best
structures possible for you to demonstrate your true understanding. And your
corresponding responsibility is to do everything you can to make your work
accurately reflect your true understanding. Note that is an ongoing experiment. It will
almost certainly require tweaking. I welcome your feedback and am ready to change
any aspects that are not working.

There is an extensive ”Getting Started” page with software to install. Please “get
started” so you are ready to go for next class and we can resolve any setup problems.

33

Course logisAcs
• Content to review before class, with pre-class ques5ons on

PrairieLearn, to create 5me for in-class work (the “prac5cals”)
• Specifica5on/sa5sfac5on grading
• 4 programming assignments in weeks 1-5 prepare for the project

– Meaningful aHempt by iniJal deadline “unlocks” later final deadline
– CombinaJon of automated tesJng and manual feedback

• Ongoing “prac5cal” exercises with automated tes5ng
• Exam partway through the semester 5ed to class Learning Targets

with op5onal retest during finals week
• Large team project star5ng in week 6!
• Ed discussion board for Q&A, go/cshelp for peer assistant hours

Our goal in this course it maximize our productivity by using professional tools and
practices (of which generative AI, is definitely one!). I have GitHub turned on. I use it
and LLMs to help assemble materials for this course. You are welcome and even
encourage to experiment with those tools in this course. Here, as in any professional
situation, though, you are responsible for the code that you submit/commit. That AI
generated the code it is not an excuse for code that doesn’t work.

That said, simply dumping the assignment into an LLM as the prompt is not
permitted. Doing so short circuits the learning process. In many cases you are
learning to use Javascript et al. for the first time. Finding/generating code that seems
to work but you don’t know why doesn’t help build the understanding you need to
tackle these problems in the future. In our programming assignments there are lots
of tests and other feedback to know if the code works. But in the projects and
elsewhere, that isn’t the case. You are responsible for both writing the code and
ensuring it works. Magic code only makes that harder…

34

Course policies (in an AI world!)
• ✅ Working together
• ❌ Working jointly on the same solution (same or

different computer) to an individual assignment
• ✅ Searching online for docs, suggestions,

StackOverflow, etc.
• ❌ Searching for or using previous solution to

problem, even if freely available online
• ✅ Generative AI (ChatGPT, Copilot) with citation
• ❌ Not citing LLM use, copying the assignment as

the LLM prompt

