delta = np.random.choice([-1, 1], steps)

Which of the following snippets are equivalent to the above NumPy code (steps >= 0). All NumPy vectors should be Python lists.

A. delta = random.choice([-1, 1])
B. delta = steps * random.choice([-1, 1])
C. delta = []
 for i in range(2):
 delta.append(random.choice([-1, 1]))
D. delta = []
 for i in range(steps):
 delta.append(random.choice([-1, 1]))

Answer: D

The NumPy code creates a vector of length size of random integers that are either -1 or 1. So we want to create a list of length size of similar random integers using the random.choice function.
delta = np.random.choice([-1,1], steps)
w = np.cumsum(delta)

Which of the following snippets are equivalent to the above NumPy code (steps is >= 0). NumPy vectors should be Python lists.

A. pos = 0
 walk = []
 for i in range(steps):
 pos += random.choice([-1, 1])
 walk.append(pos)

B. walk = []
 for i in range(steps):
 delta = random.choice([-1, 1])
 walk.append(delta)

C. walk = []
 for i in range(steps):
 if random.randint(0,1) == 0:
 walk.append(-1)
 else:
 walk.append(1)

D. pos = 0
 for i in range(steps):
 pos += random.choice([-1, 1])

Answer: A
delta is an array of randomly sample +1, -1, the cumsum function computes the cumulative sum, i.e., for [a, b, c] it computes [a, a+b, a+b+c]. Answer A implements the latter via the pos accumulator.