
CS150 – Sample Final Solution

Name: Section: A / B

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the
final “cheat sheet” from the course page, and (2) a single double-sided sheet of notes. You have 3 hours.
Read the problem descriptions carefully and write your answers clearly and legibly in the space provided.
Circle or otherwise indicate your answer if it might not be easily identified. You may use extra sheets of
paper, stapled to your exam, if you need more room, as long as the problem number is clearly labeled and
your name is on the paper. If you attached extra sheets indicate on your main exam paper to look for the
extra sheets for that problem.

You do not need to include comments, docstrings or constants in your code.

1

Question 1: Odds and Ends [0 points]

(a) For each of the statements below state whether they are True or False.

i. T For all possible inputs merge sort has lower asymptotic time complexity than selection
sort.

ii. T 01101 in binary is equal to 13.

iii. F All columns in a datascience Table must have the same type.

iv. F If we typed the two first statements below, s would have the value shown below:
>>> s = "this is a test"

>>> s.upper()

’THIS IS A TEST’

>>> s

’THIS IS A TEST’

v. T For an O(n2) algorithm, if the algorithm takes 10 seconds to run on 1000 items we
would expect it to take approximately 40 seconds on 2000 items.

(b) Add the following two binary numbers: 01101101 with 00111101 assuming they both are unsigned
positive integers. Show your work (including all carries) and verify your answer by converting both
numbers and their sum to decimal.

Solution:

11111 1

01101101 109

+ 00111101 61

---------- ---

10101010 170

2

(c) Given the following code in a file called my file.py:

if __name__ == "__main__":

print("bananas " * 2)

else:

print("apples"[:-3])

print("End of " + __name__)

i. What would be printed if the file were run by clicking on the green arrow?

Solution:
bananas bananas

End of __main__

ii. What would be printed if we executed import my_file in the Python shell?

Solution:
app

End of my_file

(d) The xor (exclusive or) of two boolean values is True if either value is True, but is False if they are
both True or both False. The following is the “truth table” for xor:

a b xor(a, b)

False False False
False True True
True False True
True True False

Write a function xor that calculates the exclusive or of two boolean variables. Remember to use
good boolean style!

Solution:

def xor(a,b):

return a != b

3

Question 2: Vector execution [0 points]

(a) In the following Python code, assume a and b are lists of floats.

import numpy as np

def mystery(a, b):

return np.sum(np.array(a) * np.array(b))

Rewrite the above code in Python using only built-in functions. If the code returns a vector, your
implementation should return a list You will be evaluated based on the efficiency and conciseness
of your approach.

Solution:

def mystery(a, b):

result = 0

for i in range(len(a)):

result += a[i] * b[i]

return result

(b) In the following Python code, assume a is a list of floats, and thresh a single float.

import numpy as np

def mystery(a, thresh):

b = np.array(a)

return b[b < thresh]

Rewrite the above code in Python using only built-in functions. If the code returns a vector, your
implementation should return a list You will be evaluated based on the efficiency and conciseness
of your approach.

Solution:

def mystery(a, thresh):

result = []

for val in a:

if val < thresh:

result.append(val)

return result

(c) Which of the above implementations, using NumPy or just Python built-ins, have the smallest
Big-O asymptotic time complexity? Briefly explain your answer.

Solution:

All the implementations have O(n) time complexity. The implementations may take different
amounts of time for the same input, but that doesn’t change the asymptotic time complexity,
which describes how execution time grows as the input grows.

4

Question 3: Objects [0 points]

(a) What does the above code below print when executed with the green arrow?

class Foo():

def __init__(self, a):

self.a = a

self.b = 2

def mystery(self, d):

return self.a + self.b + d

class Bar(Foo):

def __init__(self, c):

super().__init__(4)

self.c = c

def mystery(self, d):

return self.a + self.b + self.c + d

a = Foo(6)

b = Bar(2)

print(a.mystery(3))

print(b.mystery(1))

Solution:

11

9

(b) You are implementing an application to help the library track its collection. One desired feature
is: “Check if a book is in the public domain, i.e., its publication date is more than 95 years ago.”.
Identify one likely class, method on that class and attribute in that class you would define to
implement this feature. If there is more than one potential class, method or attribute you only need
to identify one of each.

Solution:

� Class: Book

� Method: public_domain, which returns True if book is in public domain

� Attribute: publication_data, the date when the book was published

5

Question 4: Dictionaries [0 points]

(a) Write a function named dictionary add that takes two dictionaries whose values are numbers and
returns a dictionary containing the keys found in both dictionaries. The value associated with these
keys should be the sum of the values in the two dictionaries. If a key does not occur in BOTH
dictionaries, then it should not occur in the returned dictionary. For example:

>>> d1 = {"a": 1, "b": 2, "c": 3}

>>> d2 = {"a": 4, "c": 5, "d": 6}

>>> dictionary_add(d1, d2)

{'a': 5, 'c': 8}

Solution:

def dictionary_add(dict1, dict2):

result = {}

for key in dict1:

if key in dict2:

result[key] = dict1[key] + dict2[key]

return result

(b) In one sentence, what does the following function do if dict1 and dict2 are dictionaries? Be concise
but precise.

def mystery(dict1, dict2):

for key in dict1:

if not key in dict2:

return False

return True

Solution:

Returns True if all of the keys in dict1 are in dict2, False otherwise.

6

Question 5: Recursion [0 points]

(a) Draw the image that would be created by the above code if invoked as mystery(80, 5). Assume
that the turtle is initially at the origin, facing right. Annotate your drawing with the final turtle
location and orientation.

from turtle import *

def mystery(length, levels):

if levels == 0:

dot()

else:

forward(length)

left(90)

mystery(length/2, levels-1)

right(90)

backward(length)

Solution:

7

(b) What does the following function return when invoked with "CS class" as its argument?

def mystery(s):

if s == "":

return s

else:

if s[0].isupper():

return s[0].lower() + mystery(s[1:])

else:

return s[0].upper() + mystery(s[1:])

Solution: "cs CLASS"

(c) Write a recursive function named sum_squared that takes a list of numbers as a parameter and
returns the sum of the each of the numbers squared. For example, sum_squared([1, 2, 3]) would
return 14 (that is, 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3 = 14).

Solution:

def sum_squared(list):

if list == []:

return 0

else:

return list[0]*list[0] + sum_squared(list[1:])

8

Question 6: We’ve got problems... [0 points]

(a) The following program expects two command-line arguments. The program is supposed to print
the usage if the user doesn’t supply exactly two arguments, or run the function my_function(...)

if the user does supply two arguments. However, the program has a runtime error and logical
error. Fix both problems so that it works as expected. You don’t have to rewrite the function, just
mark-up the one below.

import sys

def my_function(a, b):

some function stuff

def print_usage():

print("my_program.py <number> <number>")

number1 = sys.argv[0]

number2 = sys.argv[1]

if len(sys.argv) != 2:

print_usage()

else:

my_function(number1, number2)

Solution:

1. sys.argv will have 3 entries with the first
one being the name of the program, so
all of the indices referring to sys.argv need
to be increased by 1, e.g. number1 =

sys.argv[1].

2. Move the declaration of number1 and
number2 inside the else statement. Oth-
erwise you’ll get an index out of bounds er-
ror when an incorrect number arguments are
provided.

(b) The following function attempts to check if a number is prime or not, but it has a logical error.
Correct the function:

import math

def isprime(num):

"""Returns True if the input is a prime number, False otherwise"""

for i in range(2, int(math.sqrt(num)+1)):

if num % i == 0:

return False

else:

return True

Solution: Move the return True to be after the for loop (without an else), not inside it,
i.e.:

def isprime(num):

"""Returns True if the input is a prime number, False otherwise"""

for i in range(2, int(math.sqrt(num)+1)):

if num % i == 0:

return False

return True

9

Question 7: Sequences [0 points]

(a) Write a function named unique that takes a string as a parameter and returns True if all of the
characters in the string are unique (i.e no repeats) or False if there are duplicate letters. You will
be evaluated based on the efficiency and conciseness of your approach.

Solution:

One of many potential approaches, but your solution should use a

set for efficiency

def unique(string):

return len(set(string)) == len(string)

(b) Write a function name reverse_sentence that takes a string representing a sentence as a parameter
and returns a new string where all the words in the sentence are in reverse order. You can assume
a “word” is anything separated by a space. For example:

>>> reverse_sentence("this is a sentence")

’sentence a is this’

Solution:

def reverse_sentence(sentence):

words = sentence.split()

reversed = ""

for word in words:

reversed = word + " " + reversed

return reversed.strip()

10

