
CS150 Fall 2023 – Midterm 1

Name: Section: A

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the
midterm 1 “cheat sheet” from the course page, and (2) a single double-sided letter sheet of notes of your own
creation. You have 2.5 hours. Read the problem descriptions carefully and write your answers clearly and
legibly in the space provided. Circle or otherwise indicate your answer if it might not be easily identified.
You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the problem
number is clearly labeled and your name is on the paper. If you attached extra sheets indicate on your main
exam paper to look for the extra sheets for that problem.

You do need to include module imports (if relevant for your code), but do not need to include
comments, docstrings or constants in your code.

1

Page 2 of 10

Question 1: Understanding the role of function scope
Consider the following Python code:

def baz(x, z):

y = x + z

return y * 2

def bar(x, y):

z = x + y

return z**2

def foo(y, z):

x = y + z

return x + 1

x = 1

y = 2

z = 3

a = foo(baz(1, 2), bar(3, 4))

(a) After the above is executed with the green arrow in Thonny, what are the values of x, y, z and a?

i. x:

ii. y:

iii. z:

iv. a:

(b) If the function definitions for foo, bar and baz were the same, but the code at the bottom was now

a = foo(baz(1, 2), bar(3, 4))

x = 1

y = 2

z = 3

what are the values of x, y, z and a if the code was executed with the green arrow in Thonny?

i. x:

ii. y:

iii. z:

iv. a:

Page 3 of 10

Question 2: Writing functions with randomness
Write a function named roll_dice, that takes two parameters, faces and num, and prints the results of
rolling num independent dice with faces number of faces. Dice with n faces are labeled with the integers
1 to n, inclusive. Your function should not return a value. Here are some sample calls and output.

>>> roll_dice(6, 2)

1

4

>>> roll_dice(20, 3)

1

17

20

Page 4 of 10

Question 3: Writing functions with loops
Write two functions, one using a for loop and the other using a while loop, to print the numbers
between 1 to 80 inclusive, in ascending order, one number per line, that are odd and and a multiple of
5. Your functions should not have any parameters and should not return a value. Your solution will be
exclusively evaluated on correctness.

(a) Using a for loop

(b) Using a while loop

Page 5 of 10

Question 4: Choosing appropriate loops
For each of the following tasks, indicate whether a for loop or a while loop would be more appropriate.
Briefly explain your choice.

(a) Write a function that takes a list of integers as a parameter and returns the sum of the squares of
the integers in the list.

⃝ for loop ⃝ while loop

(b) Decrypt a string that was encrypted by inserting differing numbers of random characters after each
character of the original string (1 character after an “a”, 2 after “b”, 3 after “c”, n after the nth

letter in the alphabet). For example, if the original string was "abca" the encrypted string could
be "akbzucwcdah" (note the 1 character inserted after the "a", 2 after the "b", etc.)

⃝ for loop ⃝ while loop

(c) Write a function that prompts a user for a “yes” or “no” response, and keeps prompting them until
they provide a valid response (either yes or no).

⃝ for loop ⃝ while loop

Page 6 of 10

Question 5: Creating simpler equivalent conditionals
The function below has two integer parameters, a and b. The function works as desired, however, it
is very verbose. Rewrite the function to have identical behavior (i.e., for all possible values of a and b

return the same value), but to be as concise as possible.

def could_be_better(a, b):

if a > b:

if a >= 4 and b <= 6:

return True

else:

return False

else:

if a >= 4:

if b <= 6:

return True

else:

return False

else:

return False

Page 7 of 10

Question 6: Finding errors
The following function was designed to format strings with “American-style” phone numbers (XXX-
XXX-XXXX) by inserting the appropriate dashes. If the number is 7 digits, it inserts one dash, if it
is 10 digits it inserts two dashes, if it has a different length, it returns the number unmodified. The
examples to the right show the intended behavior. There are 3 problems with this code. Report the line
number of and briefly describe: i) one syntax error, ii) one runtime error (syntactically valid Python
that generates an error when actually executed) and iii) one logical error (the code would execute to
completion if the other errors are fixed but produces incorrect results), for three errors total. The
errors should not be variations of the same issue and should impact correctness, not just style. The
implementation can assume all inputs are valid digits (i.e., that a user could provide an invalid phone
number is not an error). You do not need to fix the errors.

1 def combine(part1, part2):

2 return part1 - part2

3

4 def format_phone(phone):

5 if len(phone) == 7:

6 return combine(phone[:3],phone[3:7])

7 elif len(phone) == 10:

8 return combine(phone[:3],combine(phone[3:6],phone[6:9]))

9 elif:

10 return phone

>>> format_phone("8675309")

'867-5309'

>>> format_phone("2126647665")

'212-664-7665'

>>> format_phone("5737")

'5737'

(a) Syntax error on line:

(b) Runtime error on line:

(c) Logical error on line: :

Page 8 of 10

Question 7: Writing functions with sequences
Python strings have a very helpful startswith method that returns True if the string starts with some
prefix. Unfortunately there isn’t a similar method for lists. You would like to write one function that
can be used with both sequence types (i.e., both strings and lists). Write a function named startswith,
with two parameters, seq and prefix, which returns True if the sequence seq starts with the sequence
prefix and False otherwise. Your function should work for any combination of string or list arguments,
i.e., one of seq and prefix may be a string and the other a list. You can assume that prefix is the
same length or shorter than seq. Some examples are shown below on the left and, for reference, some
relevant string/list comparisons are shown on the right. Your solution will be exclusively evaluated on
correctness.

>>> startswith("hello", "he")

True

>>> startswith(["h","e","l","l","o"], "he")

True

>>> startswith("hello", ["h","e"])

True

>>> startswith(["h","e","l","l","o"], ["h","e"])

True

>>> startswith(["h","e","l","l","o"], "hi")

False

>>> startswith([1, 2, 3], [1, 2])

True

>>> "ab" == "ab"

True

>>> "ab" == ["a", "b"]

False

>>> ["a", "b"] == ["a", "b"]

True

Page 9 of 10

Question 8: Utilizing turtle and other modules
Use the lines below to construct a function named parallelogram that takes three parameters, side1,
side2 and angle, and draws a parallelogram with the given side lengths and angle (like shown in the
figure below). You may assume that the turtle (the pen) is initially at the triangle (lower left corner)
and facing to the right. It should end at the triangle also pointing to the right (i.e., back at the initial
starting position).

Write the line number and line of code in the rows below. The first line is done for you as an example.
You may only use each of the scrambled lines once. Not all scrambled lines or rows may be needed. If
there is an inconsistency between the line number and the code, the latter will be used as your answer.

1 t.forward(side1)

2 t.left(angle)

3 t.right(angle)

4 import turtle as t

5 t.left(angle)

6 t.forward(side2)

7 t.right(angle)

8 t.backward(side2)

9 t.left(180 - angle)

10 t.forward(side2)

11 t.forward(side1)

12 def parallelogram(side1, side2, angle):

13 t.left(180 - angle)

14 t.backward(side2)

angle

side1

si
de
2

Line number Code
4 import turtle as t

Page 10 of 10

Page intentionally left blank.

