
CS150 Fall 2022 – Midterm

Name: Section: A / B

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the
midterm “cheat sheet” from the course page, and (2) a single double-sided letter sheet of notes of your own
creation. You have 2.5 hours. Read the problem descriptions carefully and write your answers clearly and
legibly in the space provided. Circle or otherwise indicate your answer if it might not be easily identified.
You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the problem
number is clearly labeled and your name is on the paper. If you attached extra sheets indicate on your main
exam paper to look for the extra sheets for that problem.
You do need to include module imports (if relevant for your code), but do not need to include
comments, docstrings or constants in your code.

Question Points Score

Warming up 20

Slice and dice 12

Function calls 8

T/F 8

We’ve got problems 16

Coding 16

Turtle fun 10

Total: 90

1



Page 2 of 10

Question 1: Warming up [20 points]

(a) (3 points) Semantics are similar across programming languages, and even non-programming con-
texts. The recipe instruction “simmer sauce until volume is reduced by half” is semantically most
similar to which of the following Python constructs?

⃝ An inline comment (e.g., a line starting with #)

⃝ A list

⃝ for loop

⃝ while loop

Briefly explain your choice.

(b) (3 points) Which of the following best describes who benefits from good coding practices such as
using informative function and parameter names?

⃝ Someone using a function you wrote, but who does not inspect its implementation (i.e.,
the function body)

⃝ Someone reading the function body

⃝ Both of the above

Briefly explain your choice.

(c) (6 points) You just learned about Sicherman dice, a pair of 6-sided dice with non-standard numbers
whose sums occur at the same frequencies as standard dice. One Sicherman dice has the sides 1,
2, 2, 3, 3, 4, and the other has sides 1, 3, 4, 5, 6, 8. Write a function named sich that simulates
the sum of rolling both Sicherman dice. sich should have no parameters and return the sum of the
simulated dice roll (an integer in the range 2-12 inclusive). Here are some sample calls and output.

>>> sich()

2

>>> sich()

7



Page 3 of 10

(d) (8 points) Quick coding: Write two functions, one using a for loop and the other using a while

loop, to print the numbers between 1 to 60 inclusive, in ascending order, one number per line, that
are even and and a multiple of 3. Your functions should not have any parameters and should not
return a value. For full credit your functions should be as concise and efficient as possible.



Page 4 of 10

Question 2: Slice and dice [12 points]
Given the variables s and t with the following values:

s = "Returning To"

t = "Normal, Maybe?"

Evaluate the following expressions and provide the resulting value in the boxes, one character per box.
Shade in any unused boxes at the end of the string. Make sure upper case letters can be clearly
distinguished from lower case letters.

(a) s[10:]+t[11:13]+t[1]+"k"+t[-1]

(b) s[::5] + s[::4]

(c) s[-12:-10] + t[:2].lower()

(d) (t[13:14] + t[6] + s[9])*2



Page 5 of 10

Question 3: Function calls [8 points]
Consider the following Python code:

def bar(x, i):

i = 2*len(x)

print(i)

def baz(x, i):

return i-int(x[0])

def foo(s):

r = 0

for i in range(len(s)):

y = bar(s[i:], i)

r += baz(s[i:], i)

return r

y = foo("4132")

(a) After execution the value of y is:

(b) What if anything is printed during execution?



Page 6 of 10

Question 4: T/F [8 points]
For each of the statements below state whether they are T (true) or F (false).

(a) (8 % 3) == 8 - (8 // 3) * 3 evaluates to True

(b) If a program just containing the following code was executed with the green arrow in
Thonny, the message Execute? will be printed a random number of times.

import random

def mystery():

for i in range(random.randint(1, 10)):

print("Execute?")

(c) All for loops must execute at least one iteration

(d) The expression a == b and a != b will always evaluate to True where a and b are any
integers

(e) The following function will return the length of the shortest string in any list of strings
provided as the argument

def min_len(sequence):

cur_min = len(sequence)

for val in sequence:

if len(val) < cur_min:

cur_min = len(val)

return cur_min

(f) For the following implementation of mystery, all of these function calls will execute without
an error: mystery("01234"), mystery([5, 0, 1]), mystery(["1", "2"]).

def mystery(arg):

for i in arg:

print(int(i) * 2)

(g) The following loop will eventually terminate for any input provided by the user

i = input("Enter your name: ")

while len(i) < 10:

i += "!"

(h) For the following value of a, a[1][0] >= a[2][1] evaluates to True

a = [[1, 2, 3], [4, 2, 1], [5, 3, 6]]



Page 7 of 10

Question 5: We’ve got problems [16 points]

(a) The function below has two integer parameters, a and b. The function works as desired, however, it
uses bad coding style. Rewrite the function to have identical behavior (i.e., for all possible values of
a and b return the same value), but to be as concise as possible and implemented with good style.

def could_be_better(a, b):

if a <= 5:

if b > a:

return True

else:

return False

else:

if a < 0:

return True

elif b <= a:

return False

else:

return True

(b) The following function was designed to squash multiple contiguous spaces in a string to just one
space, i.e., replace runs of 2+ spaces with 1 space. The boxed examples show the intended behavior.
There are 3 problems with this code. Identify and briefly describe (referencing the line numbers)
i) one syntax error, ii) one runtime error (syntactically valid Python that generates an error when
actually executed) and iii) one logical error (the code would execute to completion if the other errors
are fixed but produces incorrect results), for three errors total. The errors should not be variations
of the same issue and should impact correctness, not just style. You do not need to fix the errors.

1 def squash(s):

2 new_s = ""

3 for i in range(s):

4 if i = 0 or (s[i] != " " and s[i-1] != " "):

5 new_s += s[i]

6 return new_s

>>> squash(" a b")

' a b'

>>> squash(" a b ")

' a b '

>>> squash(" ")

' '

>>> squash("")

''

i. Syntax Error:

ii. Runtime Error:

iii. Logical Error:



Page 8 of 10

Question 6: Coding [16 points]
As part of a forestry study you have collected data on the coordinates of diseased trees, recorded as
fractional numbers of meters. Due to limitations in your satellite sensing system, you have separate files
with the x and y coordinates that are linked by line number (i.e., the ith line in each file corresponds
the same tree). The example files below describe two trees located at (25.6, 16) and (20, 8.2).

x.txt

25.6

20

y.txt

16

8.2

Write a function named count rect that takes 6 parameters, the filenames of the tree’s x and y
coordinates, and the x, y coordinates of the lower left and upper right corners of a rectangle (e.g.,
min_x, min_y, max_x, max_y) and returns the number of trees inside or on the boundary of that
rectangle. Assuming the data above was in files names x.txt and y.txt,

count_rect("x.txt","y.txt",20,10,30,20)

would return 1 (as there is one tree in the rectangle defined by (20, 10) and (30, 20)). Your implementation
can include other functions if that is helpful to you but doing so is not required.



Page 9 of 10

Question 7: Turtle fun [10 points]
from turtle import *

def shape(x):

for i in range(1,4):

forward(x // i)

left(90)

side = 120

while side > 10:

shape(side)

right(90)

side = side // 2

Using the grid below, draw the image that would be created by the above code. Label your drawing
if the dimensions would not be clear from the grid (not all drawing may occur on grid lines). Assume
that the turtle is initially at the lower left corner, facing right. Assume each grid square is 5 pixels by 5
pixels.



Page 10 of 10

Page intentionally left blank.


