
CS150 Fall 2019 – Midterm Solution

Name: Section: A / B

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the
midterm “cheat sheet” from the course page, and (2) a single double-sided letter sheet of notes. You have
2.5 hours. Read the problem descriptions carefully and write your answers clearly and legibly in the space
provided. Circle or otherwise indicate your answer if it might not be easily identified. You may use extra
sheets of paper, stapled to your exam, if you need more room, as long as the problem number is clearly
labeled and your name is on the paper. If you attached extra sheets indicate on your main exam paper to
look for the extra sheets for that problem.
You do need to include module imports (if relevant for your code), but do not need to include
comments, docstrings or constants in your code.

Question Points Score

Warming up 16

Slice and dice 12

Function calls 8

T/F 8

We’ve got problems 16

Coding 16

Turtle fun 10

Total: 86

1

Question 1: Warming up [16 points]

(a) (3 points) Write an appropriate docstring for the following function, which computes the volume
of a sphere.

def vol(radius):

return 4/3*3.1415*radius**3

Solution:

"""

Compute the volume of a sphere

Args:

radius: Radius of the sphere

Returns: Volume as a float

"""

(b) (5 points) A bingo ball set contains 75 balls. Each ball is labeled with a letter (one of “B”, “I”,
“N”, “G” or “O”) and a number. The balls with the letter “B” are numbered 1-15 inclusive, “I”
16-30, “N” 31-45, “G” 46-60 and “O” 61-75. Write a function named bingo that returns a string
with the label for a random bingo ball. For example:

>>> bingo()

'B3'

>>> bingo()

'N31'

>>> bingo()

'G52'

Solution:
from random import randint

def bingo():

letter=randint(0,4)

return "BINGO"[letter] + str(letter*15 + randint(1,15))

2

(c) (8 points) Quick coding: Write two functions, one using a for loop and the other using a while

loop, to print the numbers from 1 to 100 inclusive, in ascending order, one number per line, which
are multiples of either 3 or 5.

Solution:

There was some ambiguity around how to interpret “either”, i.e. would that exclude numbers
that are multiples of both 3 and 5. The intent was to interpret “or” in the logical sense, i.e. 3,
5 and 15 would all be printed. Both interpretations were accepted. To exclude 15, you could
change the conditional expression to (i % 3 == 0) != (1 % 5 == 0).

def forloop():

for i in range(1, 101):

if i % 3 == 0 or i % 5 == 0:

print(i)

def whileloop():

i = 1

while i <= 100:

if i % 3 == 0 or i % 5 == 0:

print(i)

i += 1

3

Question 2: Slice and dice [12 points]
Given the variables s and t with the following values:

>>> s

'many string'

>>> t

'copies in cs150'

Evaluate the following expressions and provide the resulting value in the boxes, one character per box.
Fill in any unused boxes at the end of the string. Make sure upper case letters can be clearly distinguished
from lower case letters.

(a) t[2] + s[3] + s[4:] + s[5]

Solution: py strings

(b) t[::5] * 3

Solution: csccsccsc

(c) (s[0] + s[3:5]).upper() + t[10:]

Solution: MY cs150

(d) s[-1] + t[1] + " " + t[:8:5]

Solution: go cs

4

Question 3: Function calls [8 points]
Consider the following Python code:

def bar(x, y):

print(x + y)

return x * 2

def foo(x):

y = x

for i in range(len(x)):

y = y + bar(x[:i], y)

return int(y)

y = foo("23")

(a) After execution the value of y is:

(a) 2322

(b) What if anything is printed during execution?

Solution:

23

223

5

Question 4: T/F [8 points]
For each of the statements below state whether they are True or False.

(a) F sorted(["alpha", "charlie", "Bravo", "Delta"]) would evaluate to
["alpha","Bravo","charlie","Delta"].

(b) T 8 % 3 + 3 * (8 // 3) evaluates to 8

(c) F A while loop requires that we know the number of iterations to execute before the loop
starts

(d) T The following two functions return identical results for all possible integer inputs

def f(a, b):

return 2 * a + b + 1

def g(a, b):

return (2 * a) + (b + 1)

(e) T After this code executes x has the value 12

x = 0

for i in "ab":

for j in range(3):

x += 1 + j

(f) F The following code will raise an error when the argument is a string, but execute successfully
when the argument is a list of integers.

def mystery(arg):

for i in range(len(arg)):

print(arg[i] * i)

(g) F The following code will have an infinite loop for all possible user inputs

i = input("Enter your name: ")

while len(i) > 0:

i = i[0:]

(h) F After this code executes len(a) will be 3

a = [1, 2, 3]

b = a.pop(1)

6

Question 5: We’ve got problems [16 points]

(a) The function below has two integer parameters, a and b. The function works as desired, however,
it uses bad coding style. Rewrite the function to have identical behavior, but to be as concise as
possible and implemented with good style.

def could_be_better(a, b):

if b >= 8:

return False

elif b <= 5 and False:

return True

elif a == -10 or b > 5:

return False

else:

return True

Solution:
def better(a, b):

Also accepted:

return not (a == -10 or b > 5)

return a != -10 and b <= 5

(b) The following function was designed to return True if the elements of a list are sorted in ascending
order (i.e. xi ≤ xi+1) and False otherwise. An empty list is considered sorted. There are several
problems with this code including at least one syntax error, one runtime error and one logical error
(the code executes but produces incorrect results). Identify and describe one syntax error, one
runtime error and one logical error (for three errors total), which are not variations of the same
issue. Your problems should impact correctness, not just style. You do not need to fix the errors.

def issorted("seq"):

for i in range(len(seq)):

if seq[i] > seq[i+1]:

return False

return False

Solution:

1. Syntax Error: Function parameter seq specified as a string literal not an identifier.

2. Runtime Error: In the last iteration, when i is len(seq)-1, there will be an out of range
of error because seq[i+1] is beyond the end of the list.

3. Logical Error: The final return statement should be return True because at that point
we know the list is in sorted order (if not, the function would have already returned False).

7

Question 6: Coding [16 points]
Write a function named closest to that takes two parameters, a filename as a string and an integer
target, and returns the integer in the file closest to target. The file will have one integer per line,
and is guaranteed to contain at least one integer. If multiple values are equally close to target you can
return any of those values. For example if the file contained 10, 6, -3 and 20, and the target is 0, your
function should return the integer -3. Your implementation can include other functions if that is helpful
to you but doing so is not required.

Solution:

def closest_to(filename, target):

with open(filename, "r") as file:

values = []

for line in file:

values.append(int(line))

closest = values[0]

closest_dist = abs(closest - target)

for value in values:

dist = abs(value - target)

if dist <= closest_dist:

closest_dist = dist

closest = value

return closest

8

Question 7: Turtle fun [10 points]
from turtle import *

def shape(x):

forward(x)

dot(5)

backward(x)

value=80

while abs(value) >= 10:

if value > 0:

left(90)

shape(value)

right(90)

else:

right(90)

shape(-value)

left(90)

forward(20)

value = value / -2

Using the grid below, draw the image that would be created by the above code. Label your grid so all
relevant dimensions and angles are clear. Assume that the turtle is initially at the origin, facing right.

20

80

40

20

10

9

Page intentionally left blank.

10

