
CS150 Fall 2018 – Midterm

Name: Section: A / B

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use
(1) the midterm “cheat sheet” from the course page, and (2) a single double-sided letter sheet of
notes. You have 2.5 hours. Read the problem descriptions carefully and write your answers
clearly and legibly in the space provided. Circle or otherwise indicate your answer if it might not be
easily identified. You may use extra sheets of paper, stapled to your exam, if you need more room,
as long as the problem number is clearly labeled and your name is on the paper. If you attached
extra sheets indicate on your main exam paper to look for the extra sheets for that problem.

You do not need to include comments, docstrings or constants in your code.

1: Warming up 16

2: Slice and dice 12

3: Function calls 8

4: T/F 8

5: We’ve got problems 16

6: Coding 16

7: Turtle fun 10

Total 86

1



1. [16 points] Warming up

(a) [3 points] Write out three (3) different ways of importing the random module and for
each of those three ways, write an example of how you would invoke the randint function
with that import style.

(b) [5 points] Quick coding: In the game Yahtzee, a player can roll a variable number of
six-sided dice (with numbers 1-6) in each turn. Write a function named yahtzee that
takes the number of dice to roll as a parameter and returns a string with the randomly
generated rolls for that number of dice. For example:

>>> yahtzee(1)

1

>>> yahtzee(2)

36

>>> yahtzee(5)

12345

2



(c) [8 points] Quick coding: Write two functions, one using a for loop and the other using
a while loop, to print the numbers from 1 to 60 inclusive, one number per line, which
are both even and evenly divisible by 3.

3



2. [12 points] Slice and dice

Given the variables s and t with the following values:

>>> s

'string games'

>>> t

'in cs class'

Evaluate the following expressions and provide the resulting value in the boxes, one character
per box. Fill in any unused boxes at the end of the string. Make sure upper case letters can
be clearly distinguished from lower case letters.

(a) s[:6] + s[-1] + " " + t[:5]

(b) t[6::3] * 4

(c) t[3:6] + t.split()[0].upper() + t[5:]

(d) t[-s.find("i")] + s[6:11:1]

4



3. [8 points] Function calls

Consider the following Python code:

def bar(r):

print(r * 2)

return int(r) * 2

def foo(s):

r = 0

for i in range(1, len(s)):

r += bar(s[-i])

return r

y = foo("4253")

After execution what is the value of y and what, if anything, is printed in the shell?

5



4. [8 points] T/F

For each of the statements below state whether they are True or False.

list("dcba") == ["a", "b", "c", "d"] will evaluate to True

3/2 + 3//2 + 7 % 5 evaluates to 4.5

(["abc"] + ["def"])[1][2] will evaluate to "b"

After this code executes x has the value 9

x = 0

for i in range(3):

for j in range(3):

x += i * j

The following two functions produce identical results

def f(a, b):

return a < 0 and b > 10

def g(a, b):

return not (b <= 10 or a >= 0)

The following function will execute successfully when the argument is a list of integers
but will raise an error for a string argument

def mystery(x):

for i in x:

print(i * 2)

All values in a list must be of the same type

The following code will have an infinite loop for certain user inputs

i = int(input("Enter a number: "))

while i > 10:

i -= 1

6



5. [16 points] We’ve got problems

(a) [8 points] The function below has two integer parameters, a and b. The function works
as desired, however, it uses bad coding style. Rewrite the function to have identical
behavior, but to be as concise as possible and implemented with good style.

def could_be_better(a, b):

if a == 5 and a != 5:

return True

elif a == 5:

return False

elif b > 5 or False:

return False

else:

return True

(b) [8 points] The following function was designed to return a list of indices at which the
string “ATG” (the start codon) is found in the string parameter dna. There are several
problems with this code including at least one syntax error, one runtime error and one
logical error (the code executes but produces incorrect results). Identify and describe
one syntax error, one runtime error and one logical error (for three errors total), which
are not variations of the same issue. Your problems should impact correctness, not just
style.

def starts(dna):

for i range(len(dna)):

if dna[i].lower() == "atg":

indices = indices + [i]

return indices

7



6. [16 points] Coding You are performing a linguistic study of tweets. You want to extract
from a file of tweets just those tweets that include certain strings. Write a function named
filter tweets that has two parameters, a filename and a list of strings, and returns a list of
tweets that include those strings (anywhere within the tweet). Assume the file contains one
tweet per line. You should only return tweets that contain an exact match (including case)
for one of the strings, i.e. if the string is “abc” the tweet “ABC” should not be returned
but “def abc” should be returned. The returned list should only contain one instance of a
tweet even if it matches multiple strings. You are not permitted to use a set or dictionary.
Your code need not be a single function, you can write other functions to be invoked from
filter tweets.

>>> filter_tweets("tweets.txt", ["DM", "@Middlebury", "@Midd_Dining"])

["@Middlebury Class of 2018 celebrates ...", "Don't DM me if...", ...]

8



7. [10 points] Turtle fun

from turtle import *

def shape(x):

forward(x)

left(30)

backward(x)

left(75)

side = 125

while side >= 50:

shape(side)

right(30)

side = side - 25

Draw the image that would be created by the above code and label your drawing with relevant
dimensions and angles, e.g. lengths of lines. Assume that the turtle is initially at the origin,
facing right.

9



Page intentionally left blank.

10


