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1. [14 points] Warming up

(a) [2 points] Briefly indicate the respective audiences for docstrings and inline/block com-
ments (i.e. after the # symbol)?

Docstrings are intended for programmers who will use the (your) functions, but not necessarily
read the underlying code, while inline/block comments (starting with #) are for programmers
who are reading the underlying code.

(b) [4 points] Quick coding: Write a function twodice that returns an integer simulating
the sum of two dice rolled simultaneously, for example:

>>> twodice()

10

>>> twodice()

2

from random import randint

def twodice():

return randint(1,6) + randint(1,6)

(c) [8 points] Quick coding: Write two functions, one using a for loop and the other using
a while loop, to print every other number from 10 to 0, starting with 10, one number
per line.

def forloop():

for i in range(10, -1, -2):

print(i)

def whileloop():

i = 10

while i >= 0:

print(i)

i -= 2
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2. [12 points] Slice and dice

Given the variables s and t with the following values:

>>> s

'simon says'

>>> t

'jump around'

Evaluate the following expressions and provide the resulting value.

(a) t[:5] + s[:5]

jump simon

(b) s[:6] + s[-9:-11:-1] + s[5:8] + t[-1]

simon is sad

(c) ((t.capitalize() + "! ") * 3).strip()

Jump around! Jump around! Jump around!

(d) (t.split()[0] + " " + t[1:4:2] + "!").upper()

JUMP UP!
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3. [8 points] Function calls

Consider the following Python code:

def bar(s):

print(s)

return len(s)

def foo(s):

r = 1

for i in range(len(s)):

bar(s[i:])

r = r * (-bar(s[i:]))

return r

y = foo("test")

After execution what is the value of y and what, if anything, is printed in the console?

Printed in the shell:

test

test

est

est

st

st

t

t

After execution y will be 24.
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4. [14 points] Coding

Write a function called swap every pair that “encrypts” a string by swapping every pair of
letters. For example:

>>> swap_every_pair("banana")

'abanan'

>>> swap_every_pair("Hello")

'eHllo'

def swap_every_pair(message):

result = ""

for i in range(1, len(message), 2):

result += message[i] + message[i-1]

if len(message) % 2 == 1:

result += message[-1]

return result
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5. [14 points] T/F

For each of the statements below state whether they are true or false.

True If s is an even-length string, s[len(s)//2:] evaluates to the second half of the
string.

True 7%3 + 5//2 + 7/4 evaluates to 4.75.

False "hello".capitalize().replace("E", "A").lower() would evaluate to "hallo".

False [["a", "b", "c"], "def"][1][1] evaluates to "b".

True The following two functions do the same thing:

def f(num):

if num // 2 < 10:

return False

else:

return True

def g(num):

return num >= 20

True The following function would return the last line in a non-empty file:

def last_line_of_file(filename):

with open(filename, "r") as file:

for line in file:

last_line = line

return last_line

True In Python all for loops can be replaced with an equivalent while loop.
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6. [12 points] We’ve got problems

(a) [6 points] The function below has two boolean parameters, a and b. The function works
correctly, however, it is too long and it uses bad coding style. Rewrite the function in
good style to be as concise as possible.

def could_be_better(a, b):

if a == False and b == False:

return True

if a == False and b == True:

return False

if a == True and b == False:

return False

if a == True and b == True:

return True

def better(a, b):

return a == b

(b) [6 points] The following function was designed to return a bool indicating if two up-
percase strings of DNA bases (“A”, “C”, “G”, “T”) are identical (defined as have same
length and DNA bases). Sometimes we don’t know the DNA base and so use “N” to
stand for “any base”, that is “N” is considered identical to any of “A”,“G”,“C”,“T”.
Describe the two different situations where this implementation will produce an invalid
result or even an error (that is Python would stop and report an error). Note, your two
situations should highlight different problems not variations of the same issue.

def is_identical(dna1, dna2):

i = 0

while i < len(dna1) or i < len(dna2):

if dna1[i] != "N" and dna2[i] != "N" and dna1[i] != dna2[i]:

return False

i += 1

i. If dna1 or dna2 is a substring of the other we will get an index error because i will
increment beyond the length of the shorter string. It should return False in this context.

ii. If dna1 and dna2 are identical it will return None instead of True since the final return
statement is missing.
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7. [16 points] Coding, take 2

Write a Python function named equalizer that will identify students who should switch
sections to equalize the number of students in two sections of a class. The section rosters
will be provided as text files with one student name per line (as Lastname, Firstname). Your
function should have two parameters, the filenames for the section 1 and section 2 rosters,
and should print the names of students who should switch and the direction as shown below.
You can pick the specific students in any way you want. If the sections have an equal number
of students, print “No switching required”.

>>> equalizer("sectionA.txt", "sectionB.txt")

Smith, John switch to section 1

def file_to_list(filename):

names = []

with open(filename, "r") as file:

for line in file:

names.append(line.strip())

return names

def print_switches(names1, names2):

delta = len(names1) - len(names2)

if (delta < -1):

for i in range((-delta) // 2):

print(names2[i], "switch to section", 1)

elif (delta > 1):

for i in range(delta // 2):

print(names1[i], "switch to section", 2)

else:

print("No switching required.")

def equalizer(section1, section2):

names1 = file_to_list(section1)

names2 = file_to_list(section2)

print_switches(names1, names2)
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8. [10 points] Turtle fun

from turtle import *

def shape(side):

forward(side)

for i in range(5):

right(90)

forward(side)

base = 0

side = 50

while side < 400:

shape(side)

current = side + base

base = side

side = current

done()

Draw the image that would be created by the above code. Assume that the turtle is initially
at the origin, facing right.
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