
CS146 Fall 2024 – Midterm 2

Name: Section: A

Date: Start time: End time:

Honor Code:

Signature:

This exam is closed book, closed notes, closed computer, closed calculator, etc. You may only use (1) the
midterm 2 “cheat sheet” from the course page, and (2) a single double-sided letter-sized sheet of notes of
your own creation. You have 2.5 hours. Read the problem descriptions carefully and write your answers
clearly and legibly in the space provided. Circle or otherwise indicate your answer if it might not be easily
identified. You may use extra sheets of paper, stapled to your exam, if you need more room, as long as the
problem number is clearly labeled and your name is on the paper. If you attached extra sheets indicate on
your main exam paper to look for the extra sheets for that problem.

You do need to include module imports (if relevant for your code), but do not need to include
comments, docstrings or constants in your code.

1

Page 2 of 10

Question 9: Connect Python to the outside world with file I/O and command line arguments
Write an entire program (not just function) that when run with the green arrow in Thonny reads a
file containing e-mail addresses provided as a command line argument and prints them out with a new
domain also provided as a command line argument. Example usage is shown below. Your program
should work for any filename and domain provided. You can assume the inputs are correctly formatted,
i.e., file contents are always correctly formatted e-mail addresses with one “@” between the username
and domain and the new domain name is valid. If your program is imported, nothing should be printed.
You can assume a correct number of command line arguments are provided (i.e., you don’t need to print
a “usage” string). Your solution will be exclusively evaluated on correctness.

>>> %Run new_domain.py emails.txt middlebury.edu

panther@middlebury.edu

gamelial@middlebury.edu

twilight@middlebury.edu

Example contents of emails.txt file:

panther@example.com

gamelial@example.com

twilight@example.com

Page 3 of 10

Question 10: Implications of the Python memory model
Add to the body the mystery function (writing relevant code on the lines) such that after the code below
executes, y is not equal to its initial value. If no such body is possible, check the box below. Briefly
explain your answer. If you do provide code, you do not need to use all of the lines.

⃝ No such function body exists

def mystery(x):

x = x[:]

for i in range(len(x)):

x[i] = x[i][:]

y = [[1, 2], [3, 4], [5, 6]]

mystery(y)

y is no longer [[1, 2], [3, 4], [5, 6]]

Page 4 of 10

Question 11: Applications of data structures
You are writing a program that receives timestamped log messages (i.e., a timestamp in seconds since
the epoch followed by a message) from many different senders via the Internet (including some sent at
the same time). Due to the nature of the Internet, messages may arrive in any order, but you need to
analyze them ordered by timestamp. Which of the following data structures would be an appropriate
choice for this task? Select all that apply. Briefly explain your choices, including why data structures
you did not select would not be appropriate.

⃝ List

⃝ Set

⃝ Dictionary

⃝ Tuple

Page 5 of 10

Question 12: Writing functions with sets
I typically teach two classes per semester. I want to know how many students I am teaching in the
fall are also enrolled in one of my spring classes. Write a function named enroll that takes four lists
of names, two for students enrolled in the fall, two for students enrolled in the spring, and returns the
number of students overlapping between fall and spring. You can assume all student names are unique
and each unique student should only be counted once. Your solution will be evaluated based on the
correctness, efficiency and conciseness of your approach. For example:

>>> fall1 = ["Hopper", "Church"]

>>> fall2 = ["Babbage", "Turing"]

>>> spring1 = ["Turing", "Hopper"]

>>> spring2 = ["Liskov", "Hopper"]

>>> enroll(fall1, fall2, spring1, spring2)

2

Note that I taught “Hopper” and “Turing” in both
the fall and the spring, but “Hopper” is only counted
once despite being in both spring classes.

Page 6 of 10

Question 13: Writing functions with dictionaries
I maintain a record of all the students I have ever taught as a list of lists. Each sublist contains the names
of the students in a particular class, e.g., CSCI146 Fall 2024. Write a function named num_taught that
returns a list of students I have taught exactly num times. Your function should take two parameters,
classes, which is a list of lists of strings, and num, an integer. Your solution will be exclusively evaluated
on correctness. You can assume all student names are unique. Example usage is shown below.

>>> my_classes = [

["Hopper", "Church", "Babbage", "Turing"],

["Wolfram", "Simon", "Hopper", "Babbage", "Knuth"],

["Liskov", "Knuth", "Turing"]

]

>>> num_taught(my_classes, 1)

['Church', 'Wolfram', 'Simon', 'Liskov']

>>> num_taught(my_classes, 2)

['Hopper', 'Babbage', 'Turing', 'Knuth']

>>> num_taught(my_classes, 3)

[]

Page 7 of 10

Question 14: Understanding and using recursive functions

(a) For each of the 4 functions funA - funD defined below, identify the resulting picture by number
among the 5 options below. Assume in each case the function was called like “funX(100,4)”, e.g.,
funA(100,4). The turtle starts at the origin (marked with a dot) facing to the right and ends at
the position and heading shown by the arrow.

import turtle as t

def triangle(s):

for i in range(3):

t.forward(s)

t.left(120)

def funA(s, n):

if n > 0:

triangle(s)

t.left(60)

funA(s/2, n-1)

def funC(s, n):

if n > 0:

triangle(s)

funC(s/2, n-1)

def funB(s, n):

if n > 0:

triangle(s)

t.penup()

t.left(60)

t.forward(s/2)

t.right(60)

t.pendown()

funB(s/2, n-1)

def funD(s, n):

if n > 0:

triangle(s)

t.penup()

t.backward(s/2)

t.pendown()

funD(s/2, n-1)

(b) For the remaining 5th picture, provide the missing function definition below. Your function should
be named funE. Write the corresponding picture number on the line below.

Page 8 of 10

Question 15: Finding errors (in recursive functions)
The following recursive function is supposed to translate a string to its corresponding integer, e.g.,
“1000” to 1000. Unfortunately, there are several different problems with this function. Identify (by
line number), explain, and fix all of the problems, and rewrite the corrected function, using a recursive
strategy without loops that only invokes int on one digit at a time. The errors should not be variations
of the same issue and should impact correctness, not just style. Examples of the intended behavior are
shown below.

>>> string_to_int("1000")

1000

>>> string_to_int("0")

0

>>> string_to_int("1234")

1234

1 def string_to_int(s):

2 if len(s) == 1:

3 return 0

4 else:

5 index = len(s) - 1

6 return int(s) * (10 ** index) + string_to_int(s[1:])

Page 9 of 10

Question 16: Using Object-Oriented Programming
Consider the following classes for representing a bank account:

class BankAccount:

def __init__(self, account_number, balance):

self.account_number = account_number

self.balance = balance

def get_balance(self):

return self.balance

def deposit(self, amount):

self.balance += amount

(a) Write a method for BankAccount named withdraw that takes a single parameter, amount, and
withdraws that amount from the account, adjusting the balance accordingly. If a withdrawal would
result in a negative balance (i.e., insufficient funds) the method should not make any changes and
return False. If there are sufficient funds, the method should perform the withdrawal and return
True. You do not need to provide the whole class, just the method implementation. Your solution
will be evaluated based on the correctness, efficiency and conciseness of your approach.

(b) A subset of the bank’s customers have another type account with overdraft protection, which allows
the account to have a negative balance up to a certain limit (i.e., withdraw more than the current
balance). You will implement this type of account with the class OverdraftAccount that inherits
from BankAccount. Which of the following methods should be overridden in the OverdraftAccount
class? Select all that apply. Briefly explain your answer.

⃝ __init__

⃝ get_balance

⃝ deposit

⃝ withdraw

Page 10 of 10

Page intentionally left blank.

