
CS 146 Fall 2024 – Final “Cheat Sheet”
Numeric Operators
+, -, /, *, **: Addition, subtraction, true division, multiplication, power
//: Floor division: Round division result down to nearest whole number
%: Modulo: Evaluate to remainder of division

Comparison Operators
==, !=: Equals, not equals
>, >=, <, <=: Greater than, greater than or equals, less than, less than or equals

Boolean Operators
not op, op1 and op2, op1 or op2: Logical NOT of op, AND of op1 and op2, OR of op1 and op2

Indexing Operator
seq[idx]: Item of seq at index idx
seq[start:stop(:step)]: Copy of subsequence of seq from inclusive start to exclusive stop by step
seq[:]: Copy all items in seq

Precedence:
parentheses > indexing > ** > negate > *,/,//,% > +,- > comparisons > not > and > or

Range
range(stop): Equivalent to range(0, stop, 1)
range(start, stop[, step]): Create sequence of integers from inclusive start to exclusive stop by step

Input/Output
• Reading input from the user

input(message): Displays message to the user and returns what the user typed as a string
• Reading from a file with a for loop

with open(filename, "r") as file:
 for line in file:
 # do something with line (a string)

• Writing to a file
open(filename, "w"): Write to file (overwrite any existing content)
open(filename, "a"): Append to the end of existing contents
file.write(item): Writes item to file (e.g. string, number) w/o trailing newline

• Reading from a URLs (webpages)
import urllib.request
with urllib.request.urlopen(some_url) as web_page:
 for line in web_page:
 line = line.decode('utf-8', 'ignore')
 # do something with line (now a string)

Command Line Arguments
• Access command line arguments when file is run as a program

import sys
__name__ is automatically set to "__main__" when file is run (i.e., green arrow)
if __name__ == "__main__":
 # If %Run program.py arg1 arg2, sys.argv is ["program.py","arg1","arg2"]

Built-in functions
abs(a): Return absolute value of number a

Strings
• The following functions are built-in

len(string): Returns the number of characters in the string
int(string), float(string), str(object): Converts numeric string to int or float, or object to a string
sorted(string): Returns the characters of the string as a list in sorted order

• String object methods
count(some_string): Return number of occurrences of some_string in the string
index(some_string): Returns the index of the first occurrence of some_string or error if it does not occur
upper(), lower(), capitalize(): Returns a new upper or lower-cased, or 1st letter upper-cased string
find(some_string): Returns the first index that some_string occurs at in the string or -1 if not found
find(some_string, index): Same as above, but starts searching at index
replace(old, new): Return a copy of the string with all occurrences of old substituted with new
startswith(prefix): Returns True if the string starts with prefix, False otherwise
endswith(suffix): Returns True if the string ends with suffix, False otherwise 
strip(): Returns a copy of the string with only the leading and trailing whitespace removed 
split(): Return a list of the words in the string using whitespace as the delimiter
isalpha(): Return True if all characters in string are alphabetical and the string has at least one character
isdigit(): Return True if all characters in string are numeric digits and the string has at least one character

• String operators 
string1 + string2: Returns a new string that is the concatenation of string1 and string2
string * int: Returns a new string that is string repeated int times 
substr in string: Returns True if substr is a substring of string, False otherwise

Lists
[] creates empty list
[object1, object2, ...] creates list containing objects
list(iterable) creates a list from any iterable object (e.g., range, string)
• The following functions are built-in

len(list): Returns the number of elements in list
sum(list), min(list), max(list): Returns the sum, min, or max of elements in list
sorted(list): Returns a new copy of the list in sorted order

• List object methods
count(item): Returns the number if occurrence of item in the list
index(item): Returns the index of the first occurrence of item in the list or error if it does not occur
append(x): Adds x to the end of the list 
extend(other_list): Adds all elements of other_list the end of the list 
insert(index, x): Insert x before index in the list 
pop(): Removes the item at the end of the list and returns it 
pop(index): Removes item at index from the list and returns it
remove(value): Remove first occurrence of value from list 
reverse(): Reverses the elements in the list in place
sort(): Sorts the elements of the list in place, returns None

• List operators 
list1 + list2: Returns a new list that contains the elements of list1 followed by the elements of list2
list * int: Returns a new list that contains the items in list repeated int times 
item in list: Returns True if item is an element of list, False otherwise

Sets 
set() creates empty set
{elt1, elt2, ...} creates a new set with the given elements

set(iterable) creates a set from any iterable object (e.g., string, list)
• The following functions are built-in and answer questions about sets

len(set): Returns the number of elements in the set
• Set object methods

add(elt): Adds elt to the set
clear(): Removes all elements from the set 
pop(): Removes an arbitrary element from the set and returns it
remove(elt): Removes elt from the set
union(set2): Returns new set with union of itself and set2
update(set2): Update itself with union of itself and set2

• Set operators 
elt in set: Returns True if elt is an element of set, False otherwise 
set1 < set2: Returns True if set1 is a proper subset of set2 (every element of set1 is in set2 and set1 != set2)
set1 | set2: Returns union of the two sets (new set with elements from both set) 
set1 & set2: Returns intersection of the two sets (new set with only elements common to both sets) 
set1 - set2: Returns set difference (new set with elements set1 not in set2)
set1 ^ set2: Returns set symmetric difference (new set with elements in set1 or set2 but not both)

Dictionaries 
{} create empty dictionary
{key1:value1, key2:value2, ...} creates a new dictionary with key-value pairs
• The following functions are built-in and answer questions about dictionaries

len(dict): Returns the number of entries (key-value pairs) in the dictionary
• Dictionary object methods

clear(): Removes all entries from the dictionary 
keys(): Returns an iterable object of all the keys in the dictionary
values(): Returns an iterable object of all the values in the dictionary
items(): Returns an iterable object of all (key, value) tuples in the dictionary
get(key[, item]): Returns value associated with key if in dictionary, item otherwise. item defaults to None.

• Dictionary operators 
item in dict: Returns True if item is in the keys of dict, False otherwise

Tuples
• Creating new tuples

() creates empty tuple
(object1, object2, ...) creates tuple containing objects

• The following functions are built-in and answer questions about tuples
len(tuple): Returns the number of elements in the tuple

• Tuple operators
item in tuple: Returns True if item is contained in tuple, False otherwise 
tuple1 + tuple2: Returns a new tuple that is the concatenation of tuple1 and tuple2

Classes
• Define a class DerivedClass that inherits/derives from BaseClass

class DerivedClass(BaseClass):
def __init__(self, x):
 # Initialize instance variables, e.g.
 self.x_coord = x

 def a_method(self, y):
 # …

• Create an instance of a class: DerivedClass(4)
• print uses the __str__ method
• Operators +, -, *, /map to methods __add__, __sub__, __mul__, __truediv__
• Operators ==, !=, <, <=, >, >= map to methods __eq__, __ne__, __lt__, __le__, __gt__, __ge__

Modules
• turtle module 

forward(dist), backward(dist): Move the turtle forward/backward by the length dist. Doesn’t
change heading.
right(angle) left(angle): Turn the turtle right/left by angle (in degrees)
goto(x, y): Move turtle to position x, y 
setheading(angle): Set the turtles heading to angle 
circle(radius): Draw a circle with specified radius; the center is radius above the starting position
dot(size): Draw a filled circle with diameter size centered on current position of the turtle
penup(), pendown(): Pick up (don’t draw when moving) or put down (draw when moving) the pen
fillcolor(color): Change the fill color to color, where color is a string 
begin_fill(), end_fill(): Start and end filling shapes with fill color

• random module 
randint(a, b): Return a random integer N such that a ≤ N ≤ b
uniform(a, b): Return a random floating point number N such that a ≤ N ≤ b
shuffle(a): Shuffle list in a place in and return None

• math module 
sqrt(num): Return the square root of num

• numpy module (import numpy as np)
np.array([10, 12, 14, 20]): creates 1-D vector from list
a+b, a-b, a*b, a/b: element-wise addition, subtraction, multiplication, true division on vectors 
a>3: element-wise comparison (returns boolean vector)
np.sqrt(a): compute element-wise sqrt
np.power(a, exp): raise a to the power exp element-wise
len(x): number of elements in a vector 
np.sum(x), np.max(x), np.min(x), np.mean(x): return scalar sum, max, min, mean of vector

• datascience module (import datascience as ds)
ds.table().with_columns('a', [1,2], 'b', [3,4]): Create table with columns a and b
t["b"], t["b"]=: Evaluate to column named b in table t as a vector, create/assign to column named b
t["b"].sum(), t["b"].max(), t["b"].min(), t["b"].mean(): compute sum, max, min, mean of
column b in table t. Equivalent to calling NumPy function on column vector, e.g., np.sum(t["b"])
t.with_column('b', [1,2]): Return table t with new column named b
t.select(["a","b"]): Evaluate to the subset of table t with just columns named a and b
t.sort("a"): Return table with rows sorted in ascending order of values in column a
t.where(expr): Extract rows of table t for indices at which expr is True
t.group("a",[fn]): Group t by unique values in columns a and apply fn to those groups independently to
produce a new table. If not specified, fn defaults to counting rows in group.

• matplotlib module (import matplotlib.pyplot as plt)
plt.plot(x, y): add data in iterables x and y to the plot 
plt.show(): display the graph 
plt.xlabel(string), plt.ylabel(string): label the x- or y-axis with string
plt.title(string): set string as the title of the plot

