


A trick question! You need to define an objective function to determine the optimal 
alignment. The objective function is one of the key knobs that we can adjust as part 
of the alignment process, and one of the key mechanisms to apply our biological 
intuition. This objective function produces alignments with the maximum number of 
matches (also known as the longest common subsequence). With the objective 
function, we can now formally define our problem as finding the alignment of 2 
strings with the maximum score.

2



We could represent the alignment as an interleaving of the two sequences. There 
are then m+n total positions, and we need to set n or m of them to determine the 
alignment.

3



3 ways to align A and T with gaps. We determine that via the number of paths from 
the start node to the end node. Each of the edge has an associated alignment and 
score. The overall score and alignment is combination of all edges (“steps”) in the 
path. The best alignment will be the highest scoring such path, the diagonal path or 
A aligned to T, in this instance.

This gives up an idea for how to solve our problem. The optimal alignment for A 
and T is the longest path from start to end, among the 3 possible paths. Here is 
start is the beginning of the string, but it doesn’t have to be. The same idea holds if 
”start” is the optimal alignment (the longest path) of two smaller strings. What does 
that sound like? Recursion! 

4





Answer: B

We want to implement the recursive relationship shown in top right.

What is the problem with? 
A: Recursive problem is not getting smaller
C: “Diagonal” edges can be match or mismatch, but we don’t account for that here.
D: We are missing the vertical and horizontal edges





Answer: D

It is actually 13! And grows exponentially with the size of the strings, e.g., the 
predecessors, align(“ACG”, “ATG”, 1, 0) are called 25 times. But we get the same 
answer for all those calls.

What observe about this problem is that solution is expressed not just in terms of 
smaller versions of the same problem (termed subproblems), but in terms of 
overlapping subproblems, i.e., the same smaller version of the problem multiple 
times. Dynamic programming approaches improve the performance of these 
algorithms by only solving each sub-problem once! 



If we think about computing (2,1), that is naively recursively exploring all of these 
possible paths. That is (2,1), depends on the score of (1,1), which depends on the 
(1,0), (0,0), (0,1) … 

We can also think about this in terms of recursive calls, e.g.,

align(…, 2,1)
align(…, 2,0)

align(…., 1, 0)
align(…., 0, 0)

align(…, 1, 0)
align(…., 0, 0)

align(…, 1, 1)
align(…., 1, 0)
align(…., 0, 0)
align(…., 0, 1)

And so on…

Notice that we traverse the node (1,0) 3 times. But the optimal alignment for that 
node doesn’t change. We should be able to compute that result once and reuse it. 
That is the key insight underlying dynamic programming approaches. When we 



have overlapping subproblems, i.e., (1,0) is a subproblem for (2,0), (2,1), (1,1) etc., 
we can improve efficiency by only solving those subproblems once.



What if we recorded the solution for each subproblem, e.g., for each combination of 
(lft, top)? Then we look up to see if you we previously solved that subproblem. If so, 
we return the recorded solution (without doing any more work), if not, we solve the 
subproblem as before but record the solution before returning.

[click]

This technique is termed “memoization”, that is we store/cache the results of the 
expensive computations do we don’t have perform those operations more than 
once. With that in place how many times should we solve each subproblem? Just 
once!



Answer: D

We want to look up the solution by (lft, top) indices, that is want to store (and 
efficiently) lookup scores associated with specific positions. A dictionary is a 
natural choice, especially when we may not know which subproblems we will 
compute.

An alternate approach would be to use a list (or list of lists) that we fill in with 
values as we compute them (using lft and top as indices). We can do so here 
because we know we will explore all subproblems, that is all indices, starting from 
0. And as a practical matter, this algorithm is often implemented in a bottom-up 
approach, by filling a 2-D array of scores, from 0 to length, instead of recursively 
from the “top down”.



Short-read sequencing (SRS) is one of the most commonly used 
technologies for sequencing the genome, i.e., inferring the 
genome sequence. It works by fragmenting the DNA into many 
pieces of approximately 500 nucleotides in length, and then 
sequencing 100-150 nucleotides of both ends of those 
fragments. Thus, the reads (each fragment yields two reads) 
are relatively short (hence the name). The first step is to 
align those fragments back to the reference genome to infer 
where in the genome they originated. This is conceptually the 
same problem we solved above, with one difference. One 
sequence is very long, the reference genome, and one is very 
short, the read sequence. The short sequence will necessarily 
have gaps and the beginning and the end that should not be 
penalized. To do so we use ”fitting” alignment, a 
modification, to your previous “global” alignment algorithm.

To eliminate those penalties, we add additional “free” or 
“taxi” edges into the lattice, that have 0 scores. We can 
jump from any node in the first column the source and from 
the sink to any node in the last column with no penalty. The 
effect of this is to align the shorter sequence, in its 
entirety, at the best location within the longer sequence. 
How could we implement this? What changes would be make in 



our code?

● Change the recursive case for the first column to compute 
the max of the existing alignment score, and 0, i.e., it 
the score will never be less than 0

● Choose the “sink” to be the highest scoring node in the 
right column instead of the bottom right corner



We can put this together to align a set of real sequencing reads to the human 
reference genome (from a region on chromosome 7). We print all the reads at their 
respective alignments to generate a “pileup” visualization. Genome coordinates are 
across the top. The first line is the human reference genome, the remaining rows 
are the sequencing reads which provide evidence for this individual true genome 
sequence in this region. Each column represents the data we have for the 
individual’s genome at that location. Notice that most columns are the same from 
top to bottom. But the one highlighted in red has a mix of Ts and Cs. This indicates 
that this person has a heterozygous variant at this location, that is they inherited a 
“T” from one parent, and “C” from the other! Recall that humans are diploid 
organisms, that we is we inherit one copy of our genome from our mother and one 
from our father. Thus, we can have two different sequences (alleles) at the same 
location in the genome.

This data is from the NA12878 reference sample, and indeed this is a confirmed 
genetic variant in this individual. To learn more about it, check out 

https://www.cs.middlebury.edu/~mlinderman/myseq/?vcf=https%3A%2F%2Fskylig
ht.middlebury.edu%2F~mlinderman%2Fdata%2FNA12878.gatk-
haplotype-annotated.vcf.gz&assumeRefRef=1

And enter chr7:141672604 into the search box.


