
Complexity doesn’t arise from using more complex features of Python (I haven’t 
been holding out on you), but on combining the features we have already learned 
about. Even the libraries we have used that offer “complex” capabilities, are 
encapsulating operations implemented with the same core features we have 
learned about. Our focus this week is how we can apply what we have learned to 
more complex applications.

We can think of an image as a single entity, or a 2-D (or even 3-D) structure of 
pixels, i.e., the image has a width and a height, and each pixel has a position 
described by specific row and column. For our purposes, let's assume that (0, 0) is 
the top-left corner of the image. 

In this case the pixel at row index 2, column index 1 as the color (208, 199, 190), 
as described by its RGB color components. That is, we model/store each pixel as a 
3-tuple. Why might we think of an image as a 3-D structure? Rows, columns and 
color components within a pixel!



Today we will use starter code containing an `Image` class for storing and 
manipulating images as 2-D structures. This class provides a simplified wrapper 
around the Pillow Python Imaging Library. `Image` loads an image from a URL and 
provides methods for getting and setting pixels at specific rows and columns. For 
example, the this loads an image from a URL, "red shifts" one pixel by adding 100 
to the red-component, then shows it on the screen. 

The `get_pixel` method returns a Pixel object, shown here, with instance variables 
for the tree color components (stored as integers).

This only shifts one pixel, if we were going to shift the entire image, like shown, we 
would need some type of loops. What kind? For loops…



A common task is to perform an operation with or to each pixel. We will need a 
loop, and since the number of pixels is known at the start of the loop, a for loop is a 
natural choice. Performing an operation to each pixel can be implemented by 
performing an operation for all possible combinations of row and column positions, 
i.e., (0,0), (0, 1) … (2, 2) in the 3×3 example above. All combinations of multiple 
sequences, in this case, the row and column indices, is readily implemented with 
nested loops.

Here the outer loop iterates over all rows, while the inner loop iterates over all 
columns. Since the loops are nested, we only advance to the next row, the next 
iteration of the outer loop, after we have iterated through all columns (for that row). 
In the output we should observe all combinations of row and column indices. We 
also see a common pattern for computing a “linear” index, that is an index if we 
traversed all the elements in row-order. The last is common way of iterating 
through a “2-D” structure stored in a list or other “1-D” structure. The loop belows
the reverse mapping, i.e., translating from a linear index to the associated rows and 
columns.

When might we use one vs. the other? It depends on how our data is stored, and 
whether the row/column structure matters to us. For example, do we want to do 
something after iterating through each row? If so, the first structure will likely be a 
better choice.



Answer: A

We want to proceed all combinations of row and column indices. All combinations 
of multiple sequences, in this case, the row and column indices, is readily 
implemented with nested loops.

What is the problem with? 
B: row and columns are reversed. If the image is not square, we might access a 
pixel that doesn’t exist. 
C: Only processing a single row and column (since loops are not nested)
D: This is close. We will execute one loop iteration for each pixel, but the 
translation from ”linear” index to row and column is incorrect. The divisor, should be 
the width, i.e., get_width(). That will produce the correct row and column



Answer: E

The list of lists would look like `[[ … row 0 … ], [… row 1 ], …]` and thus be 
accessed by first retrieving the list for the row, e.g., `image[row]`. That expression 
evaluates to a list, then we use the indexing operator again to select the pixel in 
that list associated with the specific column in that row. For a single list, we use the 
“linearized” indexing we saw earlier to map the row and column to a specific index 
in the row-ordered list of pixels. For the dictionary, we are using tuples of row-
column indices as the keys.



In the "red-shift" example above, we perform a "fixed" transformation for each pixel. 
But we could imagine transformations that might be variable, i.e., require a loop in 
some way. For example, considering horizontal "blur", where each pixel is the 
average of itself and `WINDOW-1` pixels to its right. Specifically, if `WINDOW` was 
4, each pixel would be the average of itself and the the 3 pixels immediately to its 
right. Since `WINDOW` could change, we would want to implement with a loop.



Answer: C

Here we are correct averaging all pixels. The problem with A is we are double 
counting the original pixel, while in B we are both double counting and missing the 
division to compute the average. Answer D doesn’t double count but is missing the 
division to compute the average.

Why is the limit for the inner loop img.get_width()-WINDOW+1 (and not 
img.get_width())? With the latter we would attempt to access pixels beyond the 
boundary of the image. For simplicity we ignore the right most pixels in the image. 



The bulk of today is going to adapting the ideas we have seen to implement image 
averaging, specifically with faces. That is, I want you to download the starter code 
and implement the average function to compute an average image from a list of 
input images by average each color component. That is the red component of an 
output pixel is the average of the red components for the red components of the 
same pixel in all in the input images, and the same for the green and blue 
components. Once you have done so. Experiment with averaging different subsets 
of the provided faces and discuss the following questions.



The resulting average face depends on the inputs we use. Adding or removing faces 
can change the result!

The same is true for machine learning based methods we use for facial detection (is a 
face present), facial verification (does this face match a particular known face) and 
facial recognition (does this face match any of a large set of previously observed 
faces). In these “supervised” approaches developers assemble training data sets of 
images we specific labels – has a face, has a face, doesn’t have a face – and uses 
that data to learn features associated with those labels. Those features will depend 
on the training data used. If that training data does not contain many (any) faces from 
underrepresented groups, the resulting algorithm is unlikely to be accurate when used 
with new examples from those groups. And that is exactly what researchers have 
found when they test those tools. The gender shades project tested commercial 
gender classification tools (predict gender from a facial photograph) and observed 
that accuracy was lower for darker female faces than lighter male faces (by 20-34 
percentage points). 

When we talk about “Algorithmic Bias”, this is problem we are describing. Disparate 
results for automated tools for different racial groups, gender identities, etc. It might 
seem that the underlying algorithms are “neutral”. For example, nothing in our 
averaging code was specific to a particular image, gender, etc. But as we observed 
the choice of inputs to that function can have an impact on the results. And any 
downstream uses of those average faces would reflect those choices. That is, as the 



Gender Shades authors write “Automated systems are not inherently neutral. They 
reflect the priorities, preferences, and prejudices [of the developers].” This isn’t to 
suggest that the developers are actively trying generate discriminatory outcomes, but 
more that is the unintentional result of the choices the developers make (for training 
data, for evaluation benchmarks, etc.). The first of a very famous set of “laws of 
technology” (by historian Melvin Kranzberg) captures this idea: “Technology is neither 
good nor bad; nor is it neutral.”.

The technology creator, that is you, wields tremendous power, whether they realize it 
or not. The choices they make, intentional or otherwise, can have substantial impact 
on the results of using the tools they build. Because of how fast and easily technology 
can spread (incorporating facial recognition into an application could be as simple as 
downloading a piece of software), those impacts can be felt far and wide.

What does this mean for us? That we raise our expectations for the tools we use, that 
is technology doesn’t work unless it works for everyone. Think about a time that you 
needed to use an application that felt like it wasn’t designed for you. And I don’t just 
mean bad design (e.g., Banner), but an application that seemed to be designed for 
someone else. A common example is names… There is a famous blog post 
“Falsehoods Programmers Believe About Names” that has 40 false assumptions, 
such as “People have exactly N names, for any value of N.” There is a wide range of 
naming approaches in the world, of which most people will only encounter a small 
subset.

The author writes about an example of individual with a hyphenated last name 
“…complaining about how a computer system he was working with described his last 
name as having invalid characters. It of course does not, because anything someone 
tells you is their name is — by definition — an appropriate identifier for them. John 
was understandably vexed about this situation, and he has every right to be, 
because names are central to our identities, virtually by definition.”

Having your name is rejected is more than just frustrating. ”Authentic name” policies 
can be discriminatory (e.g., Native American names are rejected, as has happened) 
or if using your “real” name would expose you to harm. ”In September 2014, hundreds 
of transgender people and drag queens had their Facebook accounts shut down after 
they were reported as fake. [As individual users started to realize that this was 
happening to people across their communities, they began to organize, lodge 
complaints and protest. Though Facebook apologized to the lesbian, gay, bisexual 
and transgender (LGBT) and drag queen communities after the issue garnered media 
attention, as of today there has not been meaningful change in Facebook’s policy. 
Rather,] the company continues to require users to provide onerous documentation to 
verify names that are flagged by users or Facebook as potentially unauthentic. This is 
problematic for a range of communities, including trans and gender non-conforming 
people, drag queens, survivors of violence, Native Americans and more.”



So again, think about a time that you needed to use an application that felt like it 
wasn’t designed for you. We don’t want to anyone to feel that way. And we should do 
our work with that goal in mind. What I hope you will take away from today is that the 
work we do in here is not somehow separate from the world, but very much a part of 
it. Thus, it can reflect both reflect society’s ills, however defined, and be a vehicle, a 
powerful one, for effecting change. I am not trying to encourage you to make any 
particular choice or choices. The choices you make will and should be personal. 
Instead, I want you to remember that technology is not neutral and will, can, reflect 
your values. So don’t put your values down when you pick up your keyboard.

Further reading/watching:
● https://www.youtube.com/watch?v=rWMLcNaWfe0
● https://www.acm.org/binaries/content/assets/public-policy/ustpc-facial-

recognition-tech-statement.pdf
● https://www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorith

ms
● http://gendershades.org
● https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-

about-names/
● https://media.business-

humanrights.org/media/documents/files/documents/Sarah_Gunther_Facebook
_Real_Name_Policy.pdf

● https://www.userinterviews.com/blog/design-failure-examples-caused-by-bias-
noninclusive-ux-research



“Too often, outdated tools, systems, and practices make interacting with the 
government cumbersome and frustrating. The challenges behind the rollout 
of HealthCare.gov made clear that accessing government services should be as 
easy as ordering a book online. Founded by President Obama in August of 2014, 
the U.S. Digital Service brought together the best engineering, design, and 
government talent to change our government’s approach to technology. We 
planned to hire ten people for three critical national priorities: modernizing 
immigration, Veterans’ benefits, and HealthCare.gov. During the 2015 State of the 
Union address, we launched an online application to join the team. We worried if 
ten people would even apply. 1000 did.”

I think of it is a little like the Peace Corps, but for programming. The USDS grew 
out of the “tech surge”, a group of engineers from Google and elsewhere that were 
recruited to help make HealthCare.gov more robust and usable during its initial and 
very troubled deployment. Mikey Dickerson, one of the main people involved the 
tech surge became the initial director of the USDS. It may seem like this is the kind 
of thing that only graduates of large Universities do, but that is not the case. 
Dickerson is a Pomona alum.

https://www.healthcare.gov/
https://www.healthcare.gov/

