recuvsow (5)

def recursion(n): recvsiow(z)

if n <= 1: O\ ) )
Pr'int("hi") ‘\/ r(,CU,VS(_o\LC [) — {4(
return recavs o (0) — (1

recursion(n-1) recuvsSowl 1) — Uyt

recursion(n-2)

How many times will “hi” be printed when you invoke recursion(3)?

moow»
B WON -0

Answer: D
The call stack will look like:
recursion(3)
recursion(2)
recursion(1) -> “hi”
recursion(0) -> “hi”
recursion(1) -> “hi”
So “hi” should be printed 3 times.




def recursion(n): recuvsan(s) X
if n <= 2: r(,cuu/sww(y) — Y
print("hi") - Yl

return reueSiow (1)
recursion(n-1)
recursion(n-2)

How many times will “hi” be printed when you invoke recursion(3)?

moow»
B WON -0

Answer: C
The call stack will look like:
recursion(3)
recursion(2) -> “hi”
recursion(1) -> “hi”
So “hi” should be printed 2 times.




1. 2. 3.
def mystery(n): def mystery(n): def mystery(seq):
if n <= 1: if n <= 1: if len(seq) == O:
return 1 return 1 return ©
else: else: else:

return (n-1)*mystery(n)

P

return n*mystery(n-1)

P,

return 1+mystery(seq[:len(seq)])

o o T L:5] =" helle

oz

Which of the code snippets above will recurse infinitely?

A. (Donly

B. 3 only

L 02
WE

7 All

Answer: D

In both 1 and 3 the recursive case does not get any smaller. In the latter, we are just
copying the list (we would want “seq[:len(seq)-1]").




1. 2. 3.
def mystery(n): def mystery(n): def mystery(n, acc):
if n == 0: if n <= 1: if n == ©:
return return 1 return acc
else: else: else:

mystery(n-1)
1> print("Unwinding:", n)

return n * mystery(n-1)

return mystery(n-1, acc*n)

Which of the code snippets above have pending operations?

A. 1 only
B. 1,2
C.13
D. 1,3
E. All

Answer: B

Both 1 and 2 have operations performed after the recursive call. For 1 it is the print,
for 2 it is the multiplication by n. While for 3 no operations are performed after the
recursive call, we just return the recursive result immediately.




