Recall: “Thinking in React”

1. Break the Ul into a component hierarchy

2. Build a static version in React

3. Identify the minimal (but complete) representation of state
CS 31 2 Soﬂware Development 4. Identify where your state should live
Designing in React . ﬁg)d inverse” data flow (data flows down, callbacks flow

https://reactjs.org/docs/thinking-in-react.html
What is the component hierarchy? Review: React state placement
$ Film Explorer x + What state do we need, and where should it be stored?

C @ @ localhost:300!

Search

Fll m EXpIO rer search term, sort type

order by S

FilmExplorer

2001: A Space Odyssey films
(1968) / \

TMDB score: 7.5

2012 // \
(2009)

TMDB score: 5.6 FilmSummary FilmSummary FilmSummary

showDetail

About Time .
‘ FilmSummary
(2013)

TMDB score: 7.6

Air
) Recall data flows “down” via props
015 .
T(Mos szcore:tts and data flows “up” via callbacks




Container components: Separating logic from Ul

FilmExplorer .
Separation of Concerns:

Film rrray e Container Component (CC): Concerned

1 with how the application works, i.e.
implements logic

Sort & filter

e Presentation Component (PC):
Concerned with how the application
looks. Typically generates DOM.

“Remember, components don’t have to emit
DOM. They only need to provide composition
boundaries between Ul concerns.” Dan Abramov

CC applied: FilmContainer

FilmContainer FilmContainer

—
<+« ~
setShowDetail (false); setShowDetail(true);
Modify state in parent via
callback passed to
FilmSummary

Working with React

Conditional rendering

function FilmContainer (props) {

const [showDetail, setShowDetail] = useState(false);
if (showDetail){
return <FilmDetail {..props} onClick(()=> setShowDetail(false)) />
} else{
return <FilmSummary {..props} onClick(()=> setShowDetail(true)) />
}

function FilmContainer (props) {

const [showDetail, setShowDetail] = useState(false);
const View = showDetail ? FilmDetail : FilmSummary;
return (

<View {...props} onClick={()=>{setShowDetail(!showDetail);}} />
)i

Some common conditional patterns:

{boolean && <Component .. />}
{boolean ? <Componentl .. /> : <Component2 .. />}

Working with React

Sequences

function FilmTable({ films, setRatingFor })
{
const keyedFilms = films.map(film => (
<FilmContainer
key={film.id} “Arrays” need key to uniquely
{...film} identify components
setRatingFor={setRatingFor}
/>
))i

return <div>{keyedFilms}</div>;

}

“Keys help React identify which items have changed, are added, or are removed.

Keys should be given to the elements inside the array to give the elements a
stable identity. Most often you would use IDs from your data as keys” -ReactJS Docs




Working with React

Mutating data
What might go wrong with this code?

const [films, setFilms] = useState([]);

const setRating = (filmid, rating) => {
const index = films.findIndex((film) => film.id === filmid);
films[index].rating = rating;

setFilms (films);
} \

films is the same object — this may not
trigger a re-render since it doesn’t
appear anything has changed

Don’t mutate state or props objects!

Working with React

Don’t mutate, make copies

map() creates a new array

const setRating = (filmid, rat#hg) => {
const newFilms = films.map((film) => {
if (film.id === filmid) {
// or return Object.assign({}, film, { rating: rating});
return { ...film, rating };

}
return film;
)i
setFilms (newFilms);
} creates a new object instead of mutating it




