Client- Client Internet Site
(e.g. browser)
Server
HTTP & URI
HTML, JSON, ™™
3-tler e App. Server Database
Architecture NG (e.g-NodeJs) o areman)
Presentation Tier Logic Tier
Routing & Models
MVvC Controllers (e.g-knex,
(e.g. Express) objection)

Why a database?

"adult": false,

"backdrop_path": "/sEQULSEnywgdSesVHFHpPAbOijl.jpg",
"genre_ids": [18, 12, 878],
"id": 286217,

"original_language": "en",

What's wrong with our approach of loading data
from a JSON file and storing it in memory?

"original_title": "The Martian"}

"overview": "During a manned mission to Mars, Astronaut Mark
Watney is presumed dead after a fierce storm and left behind by
his crew. But Watney has survived and finds himself stranded an
d alone on the hostile planet. With only meager supplies, he mus
t draw upon his ingenuity, wit and spirit to subsist and find a
way to signal to Earth that he is alive.",

"release_date": "2015-10-02",

"poster_path": "/AjbENYG3b81hYSkdrWwlhVLRPKR. jpg",

"popularity": 40.509541,

“title": "The Martian",

"video": false,

"vote_average": 7.7,

ST £YE) app.get('/api/films/:id', (request, response) => {

response.send(films[request.params.id]);

)i

Database Management Systems (DBMS)

« Efficient random access when total dataset is
tool large to fit in memory
» Fast and complex queries (not fast or complex)

Model relationships within the data
* Transactions and other forms of fault tolerance

» Security (and management tools)

Database client and server

Interface is typically SQL
or custom DSL

App. Serk

(e.g.NodeJS)

Often separate server or process

Database
(e.g. Mongo,
PostgreSQL)

Message-based protocol (over TCP/IP, etc.)

SQL vs. NoSQL

Really: Relational vs. Non-Relational

Relational (RDBMS)

Non-Relational

Data Table-oriented Document-oriented, key-value,
graph-based, column-oriented, ...

Schema Fixed schema Dynamic schema

Joins Used extensively Used infrequently

Interface SQL Custom query language ~

Transactions |ACID \

CAP

)

SELECT * FROM people

WHERE age > 25;

db.people.find(

{ age:

)

{ $gt: 25

)
/

P}

RDBMS vocabulary

DB instance (e.g. PostreSQL)

Has 0+
Databases
Has 0+
Each table has a schema
Tables with types, optional primary

key, optional constraints
Contains 0+

Rows
With 1+

Attributes/Columns

Index

Optimized lookup tables
(e.g. tree) for specific
columns

Cursor

Iterator into the result set
that can obtain a few
documents at a time

RDBMS mental model

Noun/Model, e.g. “Film” & Table
Model attributes, e.g., “title” < Columns

Schema (name and type)

Film table
id |title overview |release_date |poster_path |vote_average |rating
int |string text string string float int
1 |Star... Princes... [1977-05-25 |/tvSLB... 7.7 3
2 |2001:A...|Huma... [1968-04-05 |[/90T7... 7.5 4

Primary key: Unique identifier for record (can be 1+ columns)

SQL statements

SELECT columns FROM table WHERE conditions;

INSERT INTO table(columns) VALUES (values);

UPDATE table SET column=value,

. WHERE conditions;

DELETE FROM table WHERE conditions;

CREATE TABLE table (column Type,

DROP TABLE table;

Example

)’

SELECT title FROM Film WHERE rating >= 4;

L@L()J['T'J_J’
LG

& |
(From)

-’

CEDACHS)8 GOy

SQLite SELECT
Statement grammar

WINDOW window-name ‘window-defn
O
/'

O
GO Q)
(e Mt

When in doubt, abstract!

SQL Query Builder (knex.js)

PostgreSQL

Migrations, Queries

Object-Relational Mapping [ORM]
(objection.js)

Associations, Validation

CRC cards to DB schema

Film

Responsibility Collaborator

Knows its title

Knows its plot overview

Knows its poster

Know which genres itis |Genre

Film

id title overview poster

11 Star Wars "Princess Leia is captured...” star-wars.jpg

105 Back to the Future |"Eighties teenager Marty McFly...” back.jpg

Example: Film posters

Film
id title overview poster
1 Star Wars "Princess Leia is captured...” star-wars.jpg
105 Back to the Future |"Eighties teenager Marty McFly...” back.jpg

Example: Film posters

Film

id title overview poster

11 Star Wars "Princess Leia is captured...” star-wars1.jpg
1 Star Wars "Princess Leia is captured...” star-wars2.jpg
11 Star Wars "Princess Leia is captured...” star-wars3.jpg
1 Star Wars "Princess Leia is captured...” star-wars4.jpg
11 Star Wars "Princess Leia is captured...” star-wars5.jpg
105 Back to the Future |"Eighties teenager Marty McFly...” |back.jpg

Example: Film posters

Film

id title overview

poster

1 Star Wars "Princess Leia is captured...”

[star-wars1.jpg,
star-wars2.jpg,
star-wars3.jpg,
star-wars4.jpg,
star-wars5.jpg]

105 Back to the Future |"Eighties teenager Marty McFly...”

back.jpg

Example: Film posters

Example: Film posters

Film
id title overview poster
1 Star Wars "Princess Leia is captured...” [
{'path’’star-wars1.jpg,
‘artist’:’...",
‘date’’...",

-}
{'path’’star-wars2.jpg’,

105 Back to the Future |"Eighties teenager Marty McFly...” |back.jpg

Film
id title overview
11 Star Wars "Princess Leia is captured...” normalizing tables
105 Back to the Future |"Eighties teenager Marty McFly...”
Poster
id filmid path year
primary key 5 1 star-wars1.jpg 1977
\ 9 11 star-wars5.jpg 1992
23 105 back.jpg 1985
67 1 star-wars2.jpg 2002

T

foreign key

Example: Film posters

Database Joins are formed by Cartesian Products

Example: Film posters

Film
SELECT * from Film, Poster WHERE Film.id = Poster.filmId Responsibility Collaborator
Knows its title
Film x Poster Knows its plot overview
Film.id Poster.id Poster.filmld Know which genres itis |Genre
" 5 " Poster
” 9 " Poster
1 23 105 Responsibility |Collaborator
11 67 11 -
105 5 " Knows its path
105 9 11 Knows its date
105 23 105 - -
/ 105 67 p” one-to-many Knows its artist
Knows its film |Film
returned rows
Example: Film Ratings Thinking in relations/associations
User
Responsibility Collaborator ° “Hasone” / “BelongSTOOne”
K ’ . . .
rlotls eeT s name One-to-one relationship, e.g. Supplier and Account
Knows films | rated Rating
Rating

many to many
(or “has many-through”)

Responsibility

Collaborator

Knows rating

Knows its owner

User

Film

Responsibility

Collaborator

Knows its title

Knows its plot overview

Know which genres it is

Genre

Knows its film

Film

» “HasMany” / “BelongsToOne”

One-to-many relationship, e.g. Film and Poster

* “ManyToMany”

Many-to-many relationship (often called “has many
through”), e.g. User and Film through Rating

Where do the foreign keys go?

» “HasOne” / “BelongsToOne”

Foreign key typically in the “BelongsToOne” side
(although could be reversed)

» “HasMany” / “BelongsToOne”

Foreign key in “BelongsToOne” side (the “many” model)

* “ManyToMany”

Foreign keys in join model, e.g. Rating in “User and Film
through Rating”

True or False? There can only be
one relationship between two
models.

You are developing an application for
a veterinarian’s office. How would
you model the relation between
Customer and Animal?

A. One-to-one, e.g. “HasOne”
B. One-to-many, e.g. “HasMany”
C. Many-to-many, e.g. “HasManyThrough”

Specifying schema: Migrations

Customer data is critical! How do you evolve your
application without destroying any data?

+ Maintain multiple databases (e.g. test,
development, production, ...)

» Change schemal/data with scripted migrations

Migrations create/delete tables, add/remove/modify
columns, modify data, etc.

Advantage of migrations:
* Track all changes made to DB
* Manage with VCS
* Repeatable

Example Migration

exports.up =
knex.schema
.createTable('Film', table {
table

.integer('id")

.unsigned()

.primary();
table.text('overview');
table.string('release_date');
table.string('poster_path');
table.string('title');
table.float('vote_average');
table.integer('rating');

(knex, Promise) {

.createTable('Genre', table

table

.integer('filmId")

.unsigned()

.references('id")

.inTable('Film")

.onDelete('CASCADE');
table.integer('genreld');
table.primary(['filmId', 'genreld'l);

};

exports.down = (knex, Promise) {
knex.schema.dropTableIfExists('Genre').dropTableIfExists('Film');
i

Object Relational Mapping (ORM)

POJO

Database
(e.g. Mongo,
PostgreSQL)

App. Server
(e.g.NodedS)

JSON POJO

Client
(e.g. browser)

Object Relational Mapping (ORM)

DB rows ORM Model JSON
Database App. Server
(e.g. Mongo, (e.g-NodeJS)
PostgreSQL)
. * ~

Models

(e.g-knex,

objection)

POJO

Client

(e.g. browser)

Object Relational Mapping (ORM)

Film Model {
tableName() {
'Film';

jsonSchema() {
{

ease_date',
ter_path',

1,

properties:
id: { typ

poster_path: { type:

integer' },
overview: { type: 't " By
release_date: { type: 'string' },

‘string' },

title: { type: 'string' },

vote_average: { type: 'number' }
rating: { type: ['integer', 'nul

: 0, maximum: 5 }

1

Model {

tableName() {
'Genre';

idColumn() {
['filmId', 'genreld'];

relationMappings() {

film: {
relation: Model.BelongsToOneRelation,
modelClass: path.join(__dirname, 'Film
Vo
join: {
from: 'Genre.filmId',
to: 'Film.id'

