
The elements of this language are entities called
patterns. Each pattern describes a problem that
occurs over and over again in our environment, and
then describes the core of the solution to that
problem, in such a way that you can use this solution a
million times over, without ever doing it the same way
twice.

Christopher Alexander

Design pattern: Gang of Four

• Creational
• Ways to create objects

• Structural
• Ways to combine/compose

objects
• Behavioral

• Ways to communicate between
objects

Anti-patterns: Signs you are getting it wrong…

• Viscosity
• Easier to do a hack than do the “Right Thing”

• Immobility
• Can’t DRY out functionality

• Needless repetition
• Needless repetition
• Needless repetition
• Needless complexity from generality

Web Server
(Apache, nginx, …)

Application Server
(node, flask, …)

Database
(PostgreSQL, MongoDB…)

Design pattern: Three tier architecture

Presentation tier

Logic tier

Data tier

Design pattern: Model View Controller

Controller

View Model

User
action

Update Notify

Update

Design pattern: Model View Controller

Controller

View Model

{ artist: ‘Hugo Race’,
 title: ‘John Lee Hooker’s World Today’,
 year: 2017,
 tracks: [{name: ‘Hobo Blues’},
 {name: ‘Love Blues’},
 …
],
 …
}

Frameworks/Libraries

Frameworks

• Event based (e.g., Backbone)
• Changing the data triggers an event
• Views register event handlers

• Two-way binding (e.g. Angular)
• Assigning to a value propagates to dependent

components and vice versa
• Efficient re-rendering (e.g. React)

• Re-render all subcomponents when data
changes

Frameworks:

https://calendar.perfplanet.com/2013/diff/

Batched updates

Sub-tree re-rendering

