
Beyond Correctness

Can we give feedback on software beauty?
• Guidelines on what is beautiful?
• Quantitative evaluations?
• Qualitative evaluations?

What tools are available for ”higher level” evaluation
of our code?

Quantitative: ABC Software Metric

Counts Assignments, Branches, Conditions:

𝑠𝑐𝑜𝑟𝑒 = 𝐴2 + 𝐵2 + 𝐶2

Guidance:	≤20	per	method	

	function foo()
 const a = eval("1+1“);
 if (a === 2) {

console.log(“yay“);
 }
}

	function foo()
 const a = eval("1+1“);
 if (a === 2) {

console.log(“yay“);
 }
}

1 + 22 + 22 = 3

Quantitative: Cyclomatic complexity
Linearly-independent paths thru code
score	=	E	–	N	+	2P		
E	edges,	N	nodes,	P	connected	components

function myFuntion {
 while(...) {

 {
 if (...) {
 do_something
 }
}

E 9

N 8

P 1

CC 3

Guidance:	≤10	per	method	

Quantitative: Metrics

Use metrics “holistically”
• Better for identifying	where	improvement	is	needed	 than for signing	off	
• Look for “hotspots”, i.e. code flagged by multiple metrics (what

services like CodeClimate do…)

Metric Tool Target	score

Code-to-test	ratio Plato/Jest ≤	1:2

C0	(statement)	coverage Jest 70%+

Assignment-Branch-Condition	score None	for	JS <	20	per	method

Cyclomatic	complexity Plato,	ESLint <	10	per	method	(NIST)

Qualitative: “Code smells”
SOFA captures symptoms that often indicate code
smells:

• Is it Short?

• Does it do One thing?

• Does it have Few arguments?

• Is it at a consistent level of Abstraction?

Why “lots of arguments” smells
• Hard to get good testing coverage

• Hard to mock/stub while testing

• Boolean arguments should be a “yellow flag”
If function behaves differently based on Boolean
argument, maybe it should be 2 functions

• If arguments “travel in a pack”, maybe you need
to extract	a	new	object/class	
Same argument for a “pack” of methods

Single level of abstraction
• Complex tasks need divide & conquer
• Like a good news story, classes, methods, etc.

should read “top down”

+ Start with a high level summary of key points,
then go into each point in detail

+ Each paragraph deals with 1 topic
– Rambling, jumping between “levels of

abstraction” rather than progressively refining

Refactoring
• Start with code with smells
• Through a series of small	steps,	transform code

eliminate those smells
• Protect each step with tests
• Minimize	time	during	which	tests	are	“red”

Which of the following is not a goal of
method level refactoring?

A. Reduce code complexity
B. Eliminate code-smells
C. Eliminate bugs
D. Improve testability

Which SOFA guideline is the most
important for unit testing?

A. Short
B. Do One thing
C. Have Few arguments
D. Stick to one level of Abstraction

Other smells and their remedies

Smell Refactoring	that	may	resolve	it

Large	class Extract	class,	subclass	or	module

Long	method Decompose	conditional  
Replace	loop	with	collection	method  
Extract	method  
Replace	temp	variable	with	query 
Replace	method	with	object

Long	parameter	list/data	clump Replace	parameter	with	method	call	
Extract	class

Shotgun	surgery	 Move	method/move	field	to	collect	related	
items	into	one	DRY	place	
Aspect	Oriented	Programming

Too	many	comments Extract	method  
Introduce	assertion  
Replace	with	internal	documentation

Inconsistent	level	of	abstraction Extract	methods	&	classes

Summary
Goal:	Improve	code	structure	(as	measured	by	
quantitative	&	qualitative	measures)	without	changing	
functionality	(as	measured	by	tests)	

1. Use metrics as a guide to where you can
improve your code

2. Apply refactorings		(found on previous slide, in
Refactoring books, on line, etc.)

3. At each step, test newly-exposed seams, then
stub/mock them out in higher-level tests

What makes code “legacy”?

Still meets customer need, and	
• You didn’t write it, and it’s poorly documented	
• You did write it, but a long time ago (and it’s

poorly documented)

“Legacy	code	is	simply	code	without	tests”	[regardless	
of	who	wrote	it	or	how	pretty	it	is]	
-Michael	Feathers	

Feathers’ two ways to approach
modifying legacy code

Edit	and	Pray

1. Familiarize	yourself	with	the	
relevant	code	

2. Plan	the	changes	you	will	make	
3. Make	the	planned	changes	
4. Poke	around	to	make	sure	you	

didn’t	break	anything

Cover	and	Modify

1. Write	tests	that	cover	the	code	
you	will	modify	(creating	a	
“safety	blanket”)	

2. Make	the	changes	
3. Use	tests	to	detect	unintended	

effects

An Agile approach to legacy code
1. Identify places you need to change (termed “change

points”)

2. Add “characterization tests” to capture how the code
works now (in TDD+BDD cycles)

3. Refactor the code to make it more testable or to
accommodate the changes

4. When code is well factored and well tested, make
your changes!

5. Repeat…

If you’ve been assigned to modify
legacy code, which of the following
statements about that code base do
you most hope will be true?

A. It was originally developed using Agile
techniques

B. It is well covered by tests
C. It’s nicely structured and easy to read
D. Many of the original design documents are

available

Exploring legacy codebases: Step 1
Get the code to run!

• In a either production-like or development-like
setting

• Ideally with something resembling a copy	of
production database

• A catch: Some systems may be too large to
copy

Learn the user stories: Have customers show you
how they use the application

Exploring legacy codebases: Step 2+
2. Inspect the database schema
3. Try to build a model interaction diagram

Can be automated for some frameworks, e.g. Rails

4. Identify the key (highly connected) classes
Recall Class-Responsibility-Collaborators (CRC) cards

5. (Extend) design docs as you go:
Diagrams, CRC cards
README, GitHub wiki, etc.
Add JSDoc comments to create documentation
automatically

Adding tests: Getting started
• You don’t want to write code without tests
• You don’t have tests
• You can’t create tests without understanding the

code

How	do	you	get	started?

Characterization Tests

Establish the ground	truth	about	how	the	SW	works	
today	

Repeatable tests ensure current behaviors
aren’t changed (even if buggy)
Integration tests are a natural starting point (b/c
they are typically “black box”)

Pitfall:	Don’t	try	to	make	improvements	at	this	stage!

Recall	“Given-When-Then”	tests

Unit- and Functional-level characterization tests

Use the tests to help you learn as you go:
test('it should calculate sales tax', () => {
 const order = Order.fromJson({});
 expect(order.computeTax()).toBe(-99.99);
});

ValidationError: total: is a required property

test('it should calculate sales tax', () => {
 const order = Order.fromJson({ total: 100.00 });
 expect(order.computeTax()).toBe(-99.99);
});

Expected value to be: -99.99 Received: 8

test('it should calculate sales tax', () => {
 const order = Order.fromJson({ total: 100.00 });
 expect(order.computeTax()).toBe(8.00);
});

✓ it should calculate sales tax

(Bad) comments: The scourge of legacy code

Which of the following are useful comments?

// Add one to i.  
i++;

// Lock to protect against concurrent access.  
SpinLock mutex;

// This function swaps the panels.  
void swap_panels(Panel* p1, Panel* p2) {...}

Good(?) comments…
// Loop through every array index, get the  
// third value of the list in the content to  
// determine if it has the symbol we are looking  
// for. Set the result to the symbol if we  
// find it.

What	is	wrong	with	the	comment	above?	

Comments	should	raise	the	level	of	abstraction.	Describe	why	
the	code	was	written	this	way,	not	how…

// Scan array of tuples to find query symbol if
// present

What is the best tool for detecting (and fixing)
code smells/problems?
There	is	no	best	tool!	

The	primary	enforcement	
mechanism	is	your	self-
discipline!	

First	and	foremost	beautiful	
code	is	the	result	of	your	
professionalism	to	do	the	
“Right	Thing”	not	the	easy	
thing.	The	tools	just	help	along	
the	way.

earthcam.com

