
SQL vs. NoSQL  
Really: Relational vs. Non-Relational

Relational (RDBMS) Non-Relational
Data Table-oriented Document-oriented, key-value,

graph-based, column-oriented, …
Schema Fixed schema Dynamic schema

Joins Used extensively Used infrequently
Interface SQL Custom query language
Transactions ACID BASE?

SELECT * FROM people
WHERE age > 25;

db.people.find(
 { age: { $gt: 25 } }
)

MongoDB	vocabulary

MongoDB	instance

Databases

Documents

Fields

Has	0+

Collections

Has	0+

Contains	0+

Are	BSON	objects	with	0+

Analogous	to	RDBMS	tables

Analogous	to	RDBMS	rows

Analogous	to	RDBMS	columns,	
Like	JS	properties

Index	
Optimized	lookup	tables	for	
specific	fields	(e.g.	tree)

Cursor	
Iterator	into	the	result	set	
that	can	obtain	a	few	
documents	at	a	time	

Student cell,	email,	mailbox	number,	dorm	room,		…

Faculty cell,	email,	office	phone,	office	number,	…
Office	(e.g.	Registrar) email,	office	phone,	office	number,	…

Flexible	schema

Noun/Model,	e.g.	“Address” ⇔ Collection

Consider	an	“Address	Book”:

Some	common	fields,	but	many	differences

Document-oriented	storage	gives	the	flexibility	to	store	just	the	
exact	information	needed	for	each	object

Example	queries

db.collection.find({field: { predicate }}, { fields });  
db.collection.insertOne({ … });  
db.collection.updateMany(

{ field: { predicate } },
{ $set: { fields } }

);

”Raw”	queries

MongoDB	driver
ORM	
(Mongoose)

Our	typical	usage

Queries	
Marshaling	to	JSON

Association	
Validation

MongoDB	Shell

Seeding

Recall:	CRC	cards	model	of	Movies

Movie

Responsibility Collaborator

Knows	its	title

Knows	its	plot	overview

…

Know	which	genres	it	is Genre

*Kent	Beck	&	Ward	Cunningham,	OOPSLA	1989

Genre
Responsibility Collaborator

Knows	its	descriptor

”one	to	many”

User

Responsibility Collaborator

Knows	user’s	name

…

Knows	movies	I	rated Rating

Rating

Responsibility Collaborator

Knows	rating

Knows	its	owner User
Knows	its	movie Movie

”many	to	many”

Genres:	One-to-few

> db.movies.findOne()
{
 "_id" : ObjectId("5a69eb43a1e7248f699794aa"),
 "id" : 135397,
 "title" : "Jurassic World",
 …
 "genre_ids" : [28, 12, 878, 53]
}

Internal	Mongo	”id”	analogous	
to	primary	key

// All movies with genre_id 28
db.movies.find({ genre_ids: 28 })

// All movies with genre_id 28 and 12
db.movies.find({ genre_ids: { $all: [28, 12] } })

How	to	query?

What	if	genres	are	unbounded,	i.e.	“one-to-very	many”?

“Embedded”	array

Users	⇔	Ratings	⇔	Movies?
Should	we	embed	movies	in	users	(or	vice	versa)?	

No.	Models	on	both	sides	needs	to	stand-alone.	

Do	we	need	ratings	from	both	users	and	movies?	
Yes,	e.g.	show	“my”	ratings	or	movie’s	ratings.

{
 "_id" : ObjectId("5a69…"),
 ”title”: “Jurassic World”,
 …
 “ratings”: [{
 user: ObjectId(”13a4…"),
 rating: 4
 }]
}

{
 "_id" : ObjectId(”13a4…"),
 ”name”: “Alice Midd”,
 …
 “ratings”: [{
 movie: ObjectId(”5a69…"),
 rating: 4
 }]
}

+ Fast/easy	to	access	ratings	
- Two	queries	to	add	rating	
- Slow	to	update	existing	rating	
- Potential	for	inconsistent	state

De-normalized	(copied)	data

Should	we	use	RDBMS	or	MongoDB?

No	right	or	wrong	answer,	just	tradeoffs	
Is	your	data:	

• Highly	relational?	+RDBMS	
• Highly	polymorphic?	+MongoDB	

Does	your	application	have:	
• Complex	queries?	+RDBMS	
• Strong	data	integrity	requirements?	+RDBMS	

Getting	started	cost:	
• Uncertain	initial	schema	+MongoDB

