
Plan & Document ⇒ Agile

Dilbert 11/26/17

Requirements

Design

Development

Testing

Operations

Waterfall process:
Sequential phases

Agile: All lifecycle
phases in repeated
short cycles

Agile Manifesto (2001)
We are uncovering better ways of developing 
software by doing it and helping others do it.
Through this work we have come to value:
• Individuals and interactions over processes and

tools
• Working software over comprehensive

documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right,
we value the items on the left more.

http://agilemanifesto.org

Agile vs. agility
1. Find out where you are,
2. Take a small step towards your goal,
3. Adjust your understanding based on what

you learned, and
4. Repeat
When faced with two or more alternatives
that deliver roughly the same value, choose
the path that makes future change easier

Do you want to increment or iterate?

Incremental

Iterative

https://jpattonassociates.com/dont_know_what_i_want/

Iterative Incremental

http://itsadeliverything.com/revisiting-the-iterative-incremental-mona-
lisa

Scrum (in a nutshell)

Feature
Feature

Feature

Feature

Product Backlog

Sprint Goal Feature
Feature

”Deployable
” product
increment

Sprint (2-4 weeks)Sprint
Backlog

24 hours between
”standup” meetings

Sprint Planning

Sprint Demo
&

Retrospective

Frequent feedback!

Scrum team

Development Team
• Self-organizing
• Cross-functional
• No hierarchy of specific titles
• A single team without sub-teams
• Accountable as a group

Product Owner
• Represents the

customer
• Responsible for

prioritizing the product
backlog

Scrum Master
• Servant-leader for team
• Facilitate SCRUM

process

Critical!!

Scrum artifacts: Product backlog

• A prioritized list of user stories (and
other tasks) maintained by the
product owner

• Evolves as you learn more (stories
are added, removed, re-prioritized)

• A subset of stories are chosen for
each sprint (Spring Backlog)

• Should be readily accessible to
everyone on the team (and me!)

Feature
Feature

Feature
Feature

Product Backlog

Relevant tools: GitHub issues, Google Doc, Trello, Pivotal Tracker, …

Feature

Feature

Sprint Backlog

Recall: Epics, User stories, Scenarios

Epic

User Stories

Scenarios

has many

has many

As a <stakeholder>
I want to do
<something>
so that <result or
benefit>.

Given <a context>,
when <an event happens>,
then <an outcome should occur>.

Effort estimation and velocity
• Not all stories count equally, need to know

how much work we are taking on
• Assign each story (and bug) points

Recommend: 1, 2, 4, 8 (8 is rare and should be
split)
Vote independently, high/low explain their vote
Iterate until convergence OR take high vote

• Aim for constant velocity
velocity := points per week

For last 3 iterations, Team Blue’s
(#003F84) average velocity is 8,
Team White’s is 4. Which, if any, of
the following comparisons between
the Blue and White teams is valid?

A. Blue has more developers than White
B. Blue is twice as productive as White
C. Blue has completed more stories than White
D. None of the above

Student Advice: Scrum/Stand-ups
• “5-minute daily standups really helped us

stay on track, and share knowledge when
stuck”

• “Biggest challenge for us was team
communication/coordination”

• “Have a scrum leader each time, rotate the
position”

• “1 meeting per week isn’t enough”

Adapted from Berkeley CS169

Pair programming

• Driver types and thinks tactically about
current task, explaining thoughts while typing

• Observer reviews each line of code as typed,
and acts as safety net for the driver

• Observer thinking strategically about future
problems, makes suggestions to driver

Should be lots of talking and concentration
Frequently switch roles

Pair programming evaluation
• Small increase in developer time (15%)
• Decrease in defects, i.e. higher quality
• Transfers knowledge between pair

Programming idioms, tool tricks, company
processes, latest technologies, …

• Programmers often report increased job
satisfaction

Williams et al. IEEE Software, 2000

Thinking about pairing: Dreyfus squared for skills

Novice
Adv.
Beginner Competent Proficient Expert

Novice ✔ ✘

Adv.
Beginner Crazy learning!

Competent
Proficient ✔

Expert
Novice: Needs rules
Advanced Beginner: Tests the rules
Competent: Applies rules
Proficient: Falls back on rules
Expert: Transcends rules

Student Advice: Pair programming

• “Helped avoid silly mistakes that could take
a long time to debug”

• “Changing partners frequently made team
more cohesive”

Adapted from Berkeley CS169

Resolving conflicts (e.g. different views on the technical
direction)

1. Remember there is no “winning”, most questions don’t have
“right answers” just tradeoffs

2. List all items on which you agree
Instead of starting with a list of disagreements
Maybe you agree more than you realize

3. Articulate the other side’s argument, even though you don’t
agree
Avoids confusions about terms or assumptions (often the root cause of
the conflict)

4. Constructive confrontation (Intel)
If you have a strong opinion that a proposal is technically wrong, you
are obligated to speak up and seek a conclusion

5. Disagree and commit (Intel)
Once a decision is made, embrace it and move ahead

See also: K Matsudaira, Resolving Conflict. Don’t “win.” Resolve. ACM Queue 14(5) 2016

