
Testing can
never
demonstrate
the _______ of
errors in
software, only
their ________

Debugging is
twice as hard as
writing the code in
the first place.
Therefore, if you
write the code as
cleverly as
possible, you are,
by definition, not
smart enough to
debug it. absence

presence

Hierarchy of testing
• System (or end-to-end) testing: Testing

the entire application (typically to ensure
compliance with the specifications, i.e.
"acceptance" testing)

• Integration testing: Tests of combinations
of units (i.e. integration of multiple units)

• Unit testing: Tests for isolated "units", e.g.
a single function or object

Where do I spend my effort?

Google testing blog

Sp
ee

d

Kent C Dodds “Write tests. Not too many.
Mostly integration.”

C
om

pl
ex

ity

Test-driven development (TDD)

• Think about one thing the code should do
• Capture that thought in a test, which fails
• Write the simplest possible code that lets the test

pass
• Refactor: DRY out commonality w/other tests
• Continue with next thing code should do

Red – Green – Refactor
Aim for “always have working code”

Anatomy of a test (with Jest)

// Import fib function from module
const fib = require('./fibonacci');

describe('Computes Fibonacci numbers', () => {
 test('Computes first two numbers correctly', () => {
 expect(fib(0)).toBe(0);
 expect(fib(1)).toBe(1);
 });
});

Set of tests with common purpose, shared setup/teardown

Individual test
One or more:
expect(expression).matcher(assertion)

Tests should be F.I.R.S.T.
• Fast: Tests need to be fast since you will run

them frequently
• Independent: No test should depend on

another so any subset can run in any order
• Repeatable: Test should produce the same

results every time, i.e. be deterministic
• Self-checking: Test can automatically detect if

passed, i.e. no manual inspection
• Timely: Test and code developed concurrently

(or in TDD, test developed first)

How would you test this function?
const moment = require('moment');
const isBirthDay = function (birthday) {
 // moment() initializes with current date
 return moment().isSame(birthday, 'day');
};

describe('Checks if today is birthdate', () => {
 let _Date;
 beforeAll(() => { _Date = Date; });

 afterAll(() => { Date = _Date; // Reset Date });

 beforeEach(() => {
 Date.now = // Set a fixed date
 jest.fn(() => new Date('01 Jan 2018').valueOf());
 });
 …
});

moment() calls Date.now(). Replace with
“mock” function to control current date

An example of seams
Seam: A place where you can change app's behavior

without changing its source code. -Michael Feathers,
Working Effectively With Legacy Code

• Useful for testing: isolate behavior of code from that
of other code it depends on

• Here we use JS’s flexible objects to create a seam
for Date.now()

• Make sure to reset all mocks, etc. to ensure tests
are Independent

Seams, not just for Independence
Development is an iterative process

• Work from the “outside in” to identify code
“collaborators”

• Implement “the code you wish you had” at
seam

• Efficiently test out the desired interface

How much testing is enough?
• Bad: “Until time to ship”
• A bit better: X% of coverage, i.e. 95% of

code is exercised by tests
• Even better?

“You rarely get bugs that escape into production,
[and] you are rarely hesitant to change some
code for fear it will cause production bugs.” –
Martin Fowler

Moderation in all things
× “I kicked the tires, it works”
× “Don’t ship until 100% covered & green”
☑ Use coverage to identify untested or

undertested parts of code
× “Focus on unit tests, they’re more thorough”
× “Focus on integration tests, they’re more

realistic”
☑ Each finds bugs the other misses

In spite of good testing, debugging happens

To minimize the time to solution take a “scientific”
approach to debugging:
1. What did you expect to happen (be as specific

as possible)?
2. What actually happened (again as specific as

possible)?
3. Develop a hypothesis that could explain the

discrepancy
4. Test your specific hypothesis (with console.log,

the debugger, etc.)

1 & 2 aren’t that different than writing tests!

