React philosophy (& design pattern)

+ Single source of truth (the state)
* Render the HTML (view) you want for the current state

* Use callbacks (and setstate) to update state and
trigger re-rendering

% Only state!

ol

Props

Red: =—==O====110
Green: ==(===—=""-54
Blue: =152

Revisiting the color picker

function ColorPicker() {
const [red, setRed] = useState(0);
const [green, setGreen] = useState(0);
const [blue, setBlue] = useState(0);

const color = {background: “rgb(${red}, ${green}, ${blue})’};
return (
<div className="color-picker">
<ColorSwatch style={color} />
<LabeledSlider
label="red"
value={red}
setValue={(value)=>{setRed(value)}}/>

Passing state as prop

</div>

)i

Passing a callback as prop

“Thinking in React”

1. Break the Ul into a component hierarchy
2. Build a static version in React

3. Identify the minimal (but complete)
representation of state

4. Identify where your state should live

5. Add “inverse” data flow (data flows down,
callbacks flow up)

https://reactjs.org/docs/thinking-in-react.html

PropTypes in action

LabeledSlider. propTypes = {

value: PropTypes oneOnype([
PropTypes-st
PropTypes. number,

Bit of a “code smell”

]) .isRequired
SetValue: PropTypes.func.isRequired,
7

Catch errors and document component “signature”

How can we style our application

« Static CSS files

* “Import” CSS files like code

import ‘./ColorPicker.css’

+ CSS-in-JS

const ColorLabel = styled.div"
display: inline-block;
width: 50px;
text-align: left;

<ColorLabel>{props.label}:</ColorLabel>

“Style as code

Really about separation of concerns (SoC)

SoC is a design principle that each "unit" in a
program should address a different and non-
overlapping concern

HTML is content (only), Each component should
CSS is style (only) be separate

What is the component hierarchy?

B +

@ localhost:3000

2001: A Space Odyssey

(1968)
TMDB score: 7.5

2012

About Time

(2013)
TMDB score: 7.6

Air

(2015)
TMDB score: 4.5

FilmExplorer

FilmSummary

Review: React state placement

Recall data flows “down” via
props and data flows “up” via
callbacks

Update
callback

iFiImSummary

» SearchBar and FilmTable both need the “search
term” and “sort type”

* State should “live” in the nearest common ancestor
(FilmExplorer)

You are embedding the color picker in
a drawing app (to pick the pen color),
where should you maintain the color
state?

A. In the ColorPicker, and use a callback to
communicate changes to the parent
drawing component

B. In the drawing component

C. Neither, | heard | am supposed to use
Redux to manage state

Container components: Separating logic from Ul

FilmExplorer

Separation of Concerns:

Fimarray | « Container Component (CC):
I Concerned with how the application
Sort & filter works, i.e. implements logic

* Presentation Component (PC):
Concerned with how the application
looks. Typically generates DOM.

“Remember, components don’t have to emit
DOM. They only need to provide composition
boundaries between Ul concerns.” Dan Abramov

CC applied: FilmContainer

How would you apply this design pattern to the
toggling between FilmSummary and FilmDetail?

FilmContainer FilmContainer

detail === false; 4_——"'—__——-_—-—_—__————-"“-~, detail === true;

Modify state in parent via
callback passed to
FilmSummary

Interlude: Conditional rendering

function FilmContainer (props) {
const [showDetail, setShowDetail] = useState(false);
const View = showDetail ? FilmDetail : FilmSummary;
return (
<View {...props} onClick={()=>{setShowDetail(!showDetail);}} />
)i

Some common conditional patterns:

{boolean && <Component .. />}
{boolean ? <Componentl .. /> : <Component2 .. />}

Interlude: Immutable data structures

* Immutable: Once created, a collection cannot be
altered

» Persistent: Can create new collections from previous
collection and a mutation. The original is still valid.

* Structural Sharing: New collections use the same
structure as the original where possible to reduce
copying

const { Map } = require('immutable');

const mapl = Map({ a: 1, b: 2, c: 3 });

const map2 = mapl.set('b', 50)
“${mapl.get('b')} vs ${map2.get('b')}" // ? vs ?

Adapted from Immutable.js

React: Composition vs. Inheritance?

2001: A Space Odyssey
Jokk

TMDB score: 7.5 Fi|mSummary

Humanity finds a mysterious object buried

m beneath the lunar surface and sets off to find its
origins with the help of HAL 9000, the world's
most advanced super computer.

2001: a space odyssey

FilmDetail

Should FilmDetail inherit from FilmSummary or contain a
FilmSummary?

When do we use subtyping (inheritance)?

* Subtyping is described by an “is a”
relationship, e.g. a car “is a” vehicle

» Composition is described by a “has a”
relationship, e.g. a car “has an” engine

So FilmDetail “is a” FilmSummary or
“has a” FilmSummary?

Formalizing subtyping: Liskov Substitution Principle

Let ¢(x) be a property provable about objects
x of type T. Then &(y) should be true for
objects y of type S where S is a subtype of T.

Turing Award Winner
Barbara Liskov

TL;DR; A method that works on
an instance of type T, should
also work on any subtype of T

When a Square is not a Rectangle

class Rectangle {
constructor(w, h) {
this.w = w; Assumption is that
this.h= h; . . ,
} /changmg width doesn’t
setWwidth(w) { this.w = w; } change height
}

class Square extends Rectangle {
constructor(side) {
super(side, side);

}
setWidth(w) {
this.w = w;
this.h = h;

