
Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. Mongo,
PostgreSQL)

Routing &
Controllers
(e.g. Express)

Models
(e.g.knex,
objection)

Client-
Server
HTTP & URI

HTML, JSON,
…
3-tier
Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

A simple HTTP server

const http = require('http’);

const server = http.createServer((request, response) => {
 response.writeHead(200, { 'Content-Type': 'text/plain' });

 response.end(“Don’t Panic”);
}).listen(5042);

console.log('Listening on port %d', server.address().port);

Node HTTP module

Manually construct the response

$ curl http://localhost:5042/

Don’t Panic

In action:

A simple HTTP server with Express

const http = require('http’);
const express = require('express’);

const app = express();
app.get('/', (request, response) => {
 response.send(“Don’t Panic”);
});

app.get(‘/:name’, (request, response) => {
response.send(”Don’t panic “ + request.params.name);

const server = http.createServer(app).listen(5042);
console.log('Listening on port %d', server.address().port);

app.METHOD(PATH, HANDLER) route

Handles header, content-type, etc.

There is a one-to-one mapping between API
routes and Express routes

Parameterized routes

Express architecture

E
xp

re
ss

 R
ou

te
s

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Request

Response

Middleware modify or respond to request
Response

Aspect-oriented Programming (AOP)

• Design pattern for implementing “cross-
cutting” concerns
Middleware is an example of AOP

• “Cross cutting” concerns are those that
affect many parts (or concerns) of the code
Many requests require body parsing

• AOP is a general set of techniques for
DRYing up “cross cutting” concerns

Client
(e.g. browser)

Internet Site

Web Server
(e.g. Apache,

NGinx)

App. Server
(e.g.NodeJS)

Database
(e.g. Mongo,
PostgreSQL)

Routing &
Controllers
(e.g. Express)

Models
(e.g.knex,
objection)

Client-
Server
HTTP & URI

HTML, JSON,
…
3-tier
Architecture

MVC

Presentation Tier Logic Tier Persistence Tier

Film model (M in MVC)

Good enough for now, but what about?
• Validate user rating is 0-5?
• Express associations between models
• Support different persistence layers (e.g.

databases)

Film “resource” is a simple JavaScript object

Can’t trust the client!

We can use ORMs and other libraries to provide
this “cross cutting” functionality

The models are typically the RESTful resources

A single model: Film

Route Controller Action
POST /api/films Create new film from request data

GET /api/films/:id Read data of film with id == :id
PUT /api/films/:id Update film with id == :id from request data

DELETE /api/films/:id Delete film with id == :id
GET /api/films List (read) all films

Lo-fi OO modeling: CRC cards*

Film
Responsibility Collaborator
Knows its title

Knows its plot overview

…

Know which genres it is Genre

*Kent Beck & Ward Cunningham, OOPSLA 1989

Genre
Responsibility Collaborator
Knows its descriptor

”has many”

User
Responsibility Collaborator

Knows user’s name

…

Knows films I rated Rating

Rating
Responsibility Collaborator
Knows rating

Knows its owner User

Knows its film Film

”many to many”

CRCs and user stories

Independently rate a film
As a user
I want to rate a film
So that I can save my opinions of films

Show average ratings
As a user
I want to view average ratings of a film
So that I can know if it is a good film

