
Deployment: Closing the loop
Programs that are never deployed have not
fulfilled their purpose. We must deploy!
But we must answer:
• Is our application in a working state?
• Do we have the necessary HW/SW

resources?
• How do we actually deploy?

Continuous Integration (CI)
• Maintain a single repository

With always deployable branch
• Automate the Build (Build is a proper noun)

And fix broken builds ASAP
• The Build should be self testing
• Everyone integrates with master frequently

Small “deltas” facilitate integration and minimize bug
surface area

• Automate deployment
Practice “DevOps” culture

Martin Fowler “Key practices of Continuous Integration”

DevOps
• Involvement of the operations function in

each phase of a system’s design and
development

• Heavy reliance on automation versus human
effort

• The application of engineering practices and
tools to operations tasks

Git workflow for CI

• Branching is cheap in Git
• We will use features branches to segregate

changes until integration
• The “master” branch remains deployable

Master is always “deployable”
• Tests pass
• No incomplete features

Short-lived branch for
single feature

Git “solo” branching workflows

master

git checkout –b feature

feature

git checkout master
git merge feature

git commit –m “…”
...

Make sure
tests pass

Git/GitHub workflow with CI

Github

Alice
git branch –d feature

git push origin feature

PR
CI server tests branch and merged code

Merge PR

git checkout master
git pull --prune

Student advice: Branch-per-feature

• “Aggressive branch-per-feature minimized
merge conflicts”

• “With this many people you NEED branch-
per-feature to avoid stepping on each other”

Adapted from Berkeley CS169

Our goal is to work efficiently as a project
team. Practice now the processes you will
need in your project!

