Deployment: Closing the loop
Programs that are never deployed have not
fulfilled their purpose. We must deploy!

But we must answer:

* |s our application in a working state?

* Do we have the necessary HW/SW
resources?

* How do we actually deploy?

Continuous Integration (ClI)

* Maintain a single repository
With always deployable branch

* Automate the Build (Build is a proper noun)
And fix broken builds ASAP

* The Build should be self testing

« Everyone integrates with master frequently

Small “deltas” facilitate integration and minimize bug
surface area

* Automate deployment
Practice “DevOps” culture

Martin Fowler “Key practices of Continuous Integration”

DevOps

* Involvement of the operations function in
each phase of a system’s design and
development

» Heavy reliance on automation versus human
effort

* The application of engineering practices and
tools to operations tasks

Git workflow for ClI

Master is always “deployable”
» Tests pass
* No incomplete features

Short-lived branch for
single feature

» Branching is cheap in Git

* We will use features branches to segregate
changes until integration

* The “master” branch remains deployable

Git “solo” branching workflows

‘git checkout —b feature‘ git checkout master
git merge feature
master| () \/ :> O_O_O

_Make sure

\/ tests pass

git commit —m “..”

Git/GitHub workflow with CI

‘glt branch —d feature

Alice
git checkout master

‘git push origin feature git pull --prune

Github Cl server tests bra{nch and merged code

] o

Merge PR

Student advice: Branch-per-feature

* “Aggressive branch-per-feature minimized
merge conflicts”

* “With this many people you NEED branch-
per-feature to avoid stepping on each other”

Our goal is to work efficiently as a project

team. Practice now the processes you will
need in your project!

Adapted from Berkeley CS169

