
Pencil Code

A Programming Primer

David Bau

Visit http://pencilcode.net/ to run your programs.

"Creativity takes courage."

- Henri Matisse

Second Edition. Copyright © 2013 David Bau.

Pencil Code is an open-source system

that unites the CoffeeScript language by Jeremy Ashkenas in 2009,
and Iced await/defer extensions created by Maxwell Krohn in 2012,
with the jQuery-turtle plugin developed by the author in 2011,

using the jQuery library invented by John Resig in 2006.
This work is inspired by the beloved LOGO language

created by Seymour Papert and Wally Feurzeig in 1967.

Special thanks to the students in Lincoln Massachusetts,
Beaver Country Day School, and Dorchester McCormack School

who vetted this material.

Post questions, ideas, and bug reports to http://pencilcode.net/group

Fancy Sun illustration contributed by Margaret Z.

Random Tree illustration contributed by Mike Koss.

Cover image by Phil Clements. Back cover image by Vinod Velayudhan.

This book is typeset in Łukasz Dziedzic's 2010 open font Lato

and Paul D. Hunt's 2012 Adobe Source Code Pro.

http://pencilcode.net/
http://pencilcode.net/group

No Thresholds and No Limits

The aim of this book is to teach you to write programs as you would use a

pencil: as an outlet for creativity and as a tool for understanding.

These pages follow a fifty-year tradition of using programming as a liberating

educational tool, with no thresholds for beginners, and no limits for experts.

Seymour Papert's LOGO is the inspiration. Start with a few lines of code, and
progress to writing programs to explore art, mathematics, language,

algorithms, simulation, and thought.

The language is CoffeeScript. Although CoffeeScript is a production
programming language used by pros, it was chosen here because it has an

elegance and simplicity well-suited for beginners. While the first examples

make the language look trivial, CoffeeScript has a good notation for all the

important ideas: algebraic expressions, lists, loops, functions, objects, and
concurrency. As you learn the language, remember that the goal should be

not mastery of the syntax, but mastery of the underlying concepts.

Edit and run your programs on pencilcode.net. The site is an experiment in
community learning: everything posted is public. Write programs that would

be interesting to others. Accounts are free.

As you experiment by building your own ideas, you will find that at first your
programs will behave in ways that you do not intend. Details matter, and

persistence pays off. If you are patient in adjusting and perfecting your work,

you will be rewarded with insight.

Read, think, play, and create something beautiful.

David Bau, 2013

Contents

Part 1

Primer:

100 Little Projects

1. Lines

2. Points

3. Loops

4. Nesting
5. Functions

6. Parameters

7. Time

8. Output

9. Input

10. Numbers

11. Computation
12. Objects

13. Arrays

14. Recursion

15. Randomness

16. Sets

17. Text

18. Motion
19. Concurrency

20. Styles

21. Selectors

22. Events

23. Slicing

24. Sorting

25. Search
26. Intelligence

Contents

Part 2

Appendix:

One Project in Detail

1. Running Pencil Code

2. Keeping a Secret

3. Computers are Fine Calculators

4. Strings and Numbers
5. Creating Graphics

6. Making our First Program

7. Hurry Up and Wait

8. Using "for" to Repeat

9. Using "if" to Choose

10. Input with "read"

11. Using "while" to Repeat
12. Improving our Game

13. Making it Look Like Hangman

14. Picking a Random Secret

15. Loading a List from the Internet

16. The Whole Hangman Program

17. Making it Yours

Next Steps

Reference

Primer

100 Little Projects

In the following pages, the basic concepts of modern computer programming

are shown in a series of brief examples.

None of the examples come with explanations. Just try them.

Once you get a program working, stop and think about how it works. Make

your own customized version.

Can you draw a violet with a stem? Can you make a snowflake that really
looks like a snowflake? And can you do these things in an elegant way?

For a tutorial introduction to CoffeeScript, turn to the Appendix which begins

after example set 26. Also be sure to try the "help" command in the test panel.

Enough advice.

Let's play.

1. Lines

First
pen red

fd 50

Square
pen blue

fd 100

rt 90

fd 100

rt 90

fd 100

rt 90

fd 100

rt 90

Triangle
pen black

fd 80; rt 120

fd 80; rt 120

fd 80; rt 120

House
speed 5

pen orange

fd 30; lt 90

fd 10; rt 120

fd 80; rt 120

fd 80; rt 120

fd 10; lt 90

fd 30; rt 90

fd 60; rt 90

Turtle
pen green

rt 360, 10

lt 45, 30

rt 360, 8

lt 90, 50

rt 360, 8

lt 90, 30

rt 360, 8

lt 90, 50

rt 360, 8

lt 45, 30

message

Hello You.

2. Points

Dot Row
rt 90; dot lightgray

fd 30; dot gray

fd 30; dot()

fd 30

Message
message = 'Hello You.'

see 'message'

see message

Lighthouse
pen crimson

fd 60; label 'GO'

rt 30

fd 40; rt 120; dot gold, 30

fd 40; rt 30

fd 60; rt 90

fd 40; rt 90

Smiley
speed 10

dot yellow, 160

fd 20

rt 90

fd 25

dot black, 20

bk 50

dot black, 20

bk 5

rt 90

fd 40

pen black, 7

lt 30

lt 120, 35

ht()

Bullseye
x = 18

see x * 5

dot black, x * 5

dot white, x * 4

dot black, x * 3

dot white, x * 2

GO

90

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

3. Loops

Rectangle
pen green

for d in [50, 100, 50, 100]

 fd d

 rt 90

Rainbow
for c in [

 red

 orange

 yellow

 green

 blue

 violet

]

 pen c

 rt 360, 50

 fd 10

Range
see [1..5]

see [1...5]

Square Loop
pen blue

for [1..4]

 fd 100

 rt 90

Gold Star
pen gold, 3

for [1..5]

 fd 100

 rt 2 * 360 / 5

Descending Loop
pen purple

for x in [50..1] by -1

 rt 30, x

4. Nesting

Violet
pen blueviolet

for [1..5]

 rt 72

 for [1..3]

 fd 50

 rt 120

Combinations
for outside in [skyblue, violet, pink]

 for inside in [palegreen, orange, red]

 dot outside, 21

 dot inside, 7

 fd 25

 rt 36

Decorated Nest
pen turquoise

for [1..10]

 dot blue

 for [1..4]

 fd 50

 rt 90

 lt 36

 bk 50

Catalog
speed 100

rt 90

for color in [red, gold, green, blue]

 jump 40, -160

 for sides in [3..6]

 pen path

 for [1..sides]

 fd 100 / sides

 lt 360 / sides

 fill color

 fd 40

5. Functions

Scoot Function
pen purple

scoot = (x) -> fd 10 * x

rt 90

scoot 7

Spike Function
spike = (x) ->

 fd x

 label x

 bk x

pen crimson

for n in [1..6]

 spike n * 10

 rt 60

Square Function
square = (size) ->

 for [1..4]

 fd size

 rt 90

pen red

square 80

jump 15, 15

pen firebrick

square 50

Tee Function
tee = ->

 fd 50

 rt 90

 bk 25

 fd 50

pen green

tee()

pen gold

tee()

pen black

tee()

10

20
30

4050
60

6. Parameters

Polygon
polygon = (c, s, n) ->

 pen c

 for [1..n]

 fd s

 rt 360 / n

 pen null

polygon blue, 70, 5

bk 50

polygon(orange, 25, 6)

Rule
rule = (sizes) ->

 for x in sizes

 fd x

 bk x

 rt 90; fd 10; lt 90

pen black

rule [50, 10, 20, 10, 50, 10, 20, 10, 50]

Starburst
starburst = (x, shape) ->

 for z in [1..x]

 shape()

 rt 360 / x

stick = -> fd 30; bk 30

pen deeppink

starburst 3, stick

jump 0, -60

starburst 20, stick

jump 0, -90

starburst 10, -> fd 30; dot blue; bk 30

jump 0, -100

starburst 5, ->

 fd 30

 starburst 7, ->

 fd 10

 bk 10

 bk 30

5

4

3

2
1

Time's up!

7. Time

Pause
speed 100

pen red

for x in [1..20]

 fd 80

 rt 100

 if x is 10

 pause 2

Second Hand
speed Infinity

advance = ->

 pen lightgray

 bk 100

 rt 5

 pen red

 fd 100

tick advance

Countdown
seconds = 5

tick ->

 if seconds is 0

 write "Time's up!"

 tick null

 else

 write seconds

 seconds = seconds - 1

Click Draw
speed Infinity

pen green

tick ->

 moveto lastclick

Move Draw
speed Infinity

pen orange

tick 100, ->

 turnto lastmousemove

 fd 1

Oh Romeo, Romeo!
Wherefore art thou

Romeo?

Oh kitty, kitty!
What did you eat kitty?

Notice

This long paragraph has bold,
italic, and underlined text.

Horizontal rule below.

Link with an <a>.

8. Output

Poetry and Song
cry = (who, query) ->

 write "Oh #{who}, #{who}!"

 write "#{query} #{who}?"

cry "Romeo", "Wherefore art thou"

cry "kitty", "What did you eat"

play "fc/c/dcz"

Imagery
url = "http://upload.wikimedia.org/wikipedia" +

 "/commons/6/61/Baby_Gopher_Tortoise.jpg"

write """<center>

 </center>"""

Bold Statement
n = write "<h1>Notice</h1>"

write """

<p>This long paragraph has

bold, <i>italic</i>,

and <u>underlined</u> text.

Horizontal rule below.</p>

"""

write "<hr>"

write """

<p>

Link with an <a>.

</p>

"""

n.css

 background: pink

Graffiti
n = write "<h1>Notice</h1>"

write """

<p>This long paragraph has

bold, <i>italic</i>,

and <u>underlined</u> text.

</p>"""

n.css

 background: pink

 display: 'inline-block'

n.pen purple, 10

n.bk 80

n.rt 45

n.fd 50

This long paragraph has bold,

italic, and underlined text.

N
otice

http://pencilcode.net/

Guess my number.

⇒ 50

Too small!
4 left.

⇒ 75

Too big!

3 left.

⇒ 64

Too big!

2 left.
⇒ 55

Too small!
Last guess!

⇒ 59

You got it!

9. Input

Button Control
pen sienna

button 'R', -> rt 10

button 'F', -> fd 10

button 'D', -> dot 'darkslateblue'

Polygon to Order
await read "Color?", defer color

await read "Sides?", defer sides

pen color

for [1..sides]

 fd 30

 rt 360 / sides

Guess My Number
secret = random [1..100]

turns = 5

write "Guess my number."

while turns > 0

 await readnum defer pick

 if pick is secret

 write "You got it!"

 break

 if 1 <= pick < secret

 write "Too small! "

 turns = turns - 1

 else if secret < pick <= 100

 write "Too big! "

 turns = turns - 1

 if turns > 1

 write "#{turns} left."

 else if turns is 1

 write "Last guess!"

 else

 write "Game over."

 write "It was #{secret}."

 break

Polygon Revisited
read "Color?", (color) ->

 read "Sides?", (sides) ->

 pen color

 for [1..sides]

 fd 30

 rt 360 / sides

R F D

Color? green

Sides? 8

Color? red

Sides? 8

53
8

1a

2b

3c

radius 1

a 3.141592653589793

c 6.283185307179586

radius 5
a 78.53981633974483

c 31.41592653589793
radius 10

a 314.1592653589793

c 62.83185307179586

5

13

14.142135623730951

14

gcf(120,80)=40

gcf(120,81)=3

gcf(120,82)=2

gcf(120,83)=1

gcf(120,84)=12
gcf(120,85)=5

gcf(120,86)=2

gcf(120,87)=3
gcf(120,88)=8

10. Numbers

Parsing
write '5' + '3'

write Number('5') + Number('3')

Ways to Count
counter = 0

write ++counter + 'a'

write (counter += 1) + 'b'

write (counter = counter + 1) + 'c'

Circle Measurements
area = (radius) ->

 Math.PI * radius * radius

circumference = (radius) ->

 2 * Math.PI * radius

for r in [1, 5, 10]

 write 'radius ' + r

 write 'a ' + area r

 write 'c ' + circumference r

Hypotenuse
hypotenuse = (a, b) ->

 Math.sqrt(a * a + b * b)

write hypotenuse 3, 4

write hypotenuse 5, 12

write hypotenuse 10, 10

write Math.floor(hypotenuse(10, 10))

Euclid's Method
gcf = (a, b) ->

 if a > b

 return gcf b, a

 remainder = b % a

 if remainder is 0

 return a

 gcf remainder, a

for x in [80..88]

 write "gcf(120,#{x})=" +

 gcf(120, x)

2
4

8

16
32

32

1.4142135623730951

1

2

6

24

2

3

5

8
13

21

11. Computation

Power
power = (x, p) ->

 answer = 1

 answer *= x for i in [0...p]

 return answer

for n in [1..5]

 write power(2, n)

Built-in Power
write Math.pow(2, 5)

write Math.pow(2, 0.5)

Factorial
factorial = (x) ->

 if x < 1 then 1

 else x * factorial(x - 1)

for x in [1..4]

 write factorial x

Fibonacci
fib = (n) ->

 if n <= 2

 1

 else

 fib(n - 1) + fib(n - 2)

for x in [3..8]

 write fib x

Complex
mandelbrot = (n, c, z) ->

 if n is 0 or z.r*z.r + z.i*z.i > 4

 return n

 else return mandelbrot n - 1, c,

 r: c.r + z.r*z.r - z.i*z.i

 i: c.i + 2*z.r*z.i

speed 100

ht()

scale 150

s = 0.05

for x in [-2..1] by s

 for y in [-1.5..1.5] by s

 n = mandelbrot 20, {r:x,i:y}, {r:x,i:y}

 moveto x, y

 dot hsl(100, 1, n/20), s

bison: 7

armadillo: 12
giraffe: 14

zebra: 16

Total 495 / 11

Average 45

12. Objects

Page Coordinates
startpos =

 pageX: 80

 pageY: 10

moveto startpos

pen coral

moveto

 pageX: 30

 pageY: 50

moveto {pageX: 160, pageY: 50}

Figure
figure = [

 {c: dimgray, x: 75, y: 12}

 {c: gray, x: 0, y: 78}

 {c: dimgray, x: -75, y: 5}

 {c: gray, x: -35, y: -18}

 {c: plum, x: 0, y: -62}

 {c: gray, x: 35, y: -15}

 {c: black, x: 0, y: 95}

]

for line in figure

 pen line.c

 slide line.x, line.y

Scoring
points =

 a: 1, e: 1, i: 1, l: 1, n: 1, o: 1, r: 1, s: 1, t: 1, u: 1

 d: 2, g: 2, b: 3, c: 3, m: 3, p: 3, f: 4, h: 4, v: 4, w: 4, y: 4

 k: 5, j: 8, x: 8, q: 10, z: 10

score = (word) ->

 total = 0

 for letter in word

 total += points[letter]

 write "#{word}: #{total}"

score x for x in ['bison', 'armadillo', 'giraffe', 'zebra']

Methods
memo =

 sum: 0

 count: 0

 add: (x) -> @sum += x; @count += 1

 stats: ->

 write "Total #{this.sum} / #{this.count}"

 write "Average #{this.sum / this.count}"

memo.add(n) for n in [40..50]

memo.stats()

Exclamation? Yowzer
adverb? slowly

noun?

2

3

5

7

11
13

17

19

23

29

13. Arrays

Story
story = [

 'Exclamation?'

 '! he said '

 'adverb?'

 ' as he jumped into his convertible '

 'noun?'

 ' and drove off with his '

 'adjective?'

 ' wife.'

]

for i in [0...story.length] by 2

 prompt = story[i]

 await read prompt, defer answer

 story[i] = answer

write story.join ''

Primes
primes = []

candidate = 2

while primes.length < 10

 composite = false

 for p in primes

 if candidate % p is 0

 composite = true

 break

 if not composite

 primes.push candidate

 write candidate

 candidate = candidate + 1

Push and Pop
stack = []

pen green

speed Infinity

button 'R', -> rt 30

button 'F', -> fd 10

button 'Push', ->

 dot crimson

 stack.push [getxy(), direction()]

button 'Pop', ->

 if not stack.length then home(); return

 [xy, b] = stack.pop()

 jumpto xy

 turnto b

 dot pink

R F Push Pop

14. Recursion

Recursive Spiral
spiral = (x) ->

 if x > 0

 fd x * 10

 rt 90

 spiral x - 1

 lt 90

 bk x * 10

pen red

spiral 10

Fractal Fern
speed 1000

fern = (x) ->

 if x > 1

 fd x

 rt 95

 fern x * .4

 lt 190

 fern x * .4

 rt 100

 fern x * .8

 lt 5

 bk x

pen green

fern 50

Koch Snowflake
speed Infinity

flake = (x) ->

 if x < 3 then fd x

 else

 flake x / 3

 lt 60

 flake x / 3

 rt 120

 flake x / 3

 lt 60

 flake x / 3

pen 'path'

for [1..3]

 flake 150

 rt 120

fill 'azure strokeStyle navy'

6
9

11

8
10

0.3955826204144705

0.46279336348825273

0:21

1:73

2:160
3:145

4:85

5:16

15. Randomness

Two Dice
onedice = ->

 random [1..6]

twodice = ->

 onedice() + onedice()

for [1..5]

 write twodice()

Random Walk
for [1..20]

 fd 10

 rt random(181) - 90

 dot gray, 5

Cubism
for [1..14]

 pen random [red,black,blue]

 fd random 70

 rt 90

Confetti
for [1..300]

 moveto random position

 dot random color

Decimal Random
for [1..2]

 write Math.random()

Five Flips
c = [0, 0, 0, 0, 0, 0]

for [1..500]

 heads = 0

 for [1..5]

 heads += random 2

 c[heads] += 1

for h of c

 b = write h + ":" + c[h]

 b.css

 background: skyblue

 width: c[h]

16. Sets

Scatter
turtle.remove()

s = hatch 15, orange

s.pen gold

s.plan ->

 this.rt random 360

 this.fd Math.abs(20 * random normal)

Turtle Race
fd 200; pen red; slide 200, 0

finished = 0

racers = hatch 7

racers.plan (j) ->

 @wear random color

 @speed 5 + random normal

 @slide j * 25 + 25, 0

 while not @touches red

 @fd random 5

 await @done defer()

 @label ++finished

Rescue Class
turtle.remove()

speed 100

randpos = ->

 [50 * random(normal), 50 * random(normal)]

hatch(20, green).scale(0.75).plan ->

 this.moveto randpos()

 this.addClass 'kid'

hatch(3, red).plan (num) ->

 hero = this

 count = 0

 hero.moveto randpos()

 hero.pen red

 while true

 await hero.done defer()

 kid = $('.kid').nearest(hero).eq(0)

 if kid.length is 0

 write "hero ##{num} got #{count}"

 return

 else if hero.touches(kid)

 count += 1

 kid.label num

 kid.remove()

 else

 hero.turnto(kid).fd(5)

1

0

2

1

2

0

0

2

0

47

which g

charCode 73

string I

88 X

188 ¼

9988 ✄

["will grow"]

["yo"]

[" of "]

["of"]

["If", "of", "to", "me"]

["grain", "grow", "not"]

null

Speak, then, to me.

["If", "you", "can"]

group 0: seeds of time

group 1: seeds

group 2: time

If you can look into the

seeds of time

And say WHICH grain

WILL grow and WHICH
WILL not,

Speak, then, to me.

17. Text

text = """If you can look into the seeds of time

 And say which grain will grow and which will not,

 Speak, then, to me."""

Substr
see text.indexOf 'which'

see text.substr 47, 7

Unicode
see 'charCode', text.charCodeAt(0)

see 'string', String.fromCharCode(73)

for x in [88, 188, 9988]

 see x, String.fromCharCode(x)

Match
see text.match /w....g.../

see text.match /[a-z][a-z]/

see text.match /\s[a-z][a-z]\s/

see text.match /\b[a-z][a-z]\b/

see text.match /\b[a-z][a-z]\b/gi

see text.match /\b[gn][a-z]*\b/g

see text.match /z/

Split
lines = text.split /\n/

see lines[2]

words = text.split /\s+/

see words[0..2]

Groups
pattern = /\b([a-z]+) of ([a-z]+)\b/

matched = pattern.exec text

for g in [0..2]

 see "group #{g}: #{matched[g]}"

Replace
r = text.replace /[A-Z][a-z]*/g,

 "<mark>$&</mark>"

r = r.replace /\n/g,

 "
"

r = r.replace /\bw[a-z]*\b/g,

 (x) -> x.toUpperCase()

write r

Catch blue!

18. Motion

Bounce
speed Infinity

pen purple

vy = 10

tick 20, ->

 slide 1, vy

 if inside(window)

 vy -= 1

 else

 vy = Math.abs(vy) * 0.9

Tag
speed Infinity

write "Catch blue!"

b = hatch blue

bk 100

tick 10, ->

 turnto lastmousemove

 fd 5

 b.turnto 45 + direction b

 b.fd 6

 if b.touches(turtle)

 write "You win!"

 tick off

 else if not b.touches(window)

 write "Blue got away!"

 tick off

Orbit
speed Infinity; pen orange

G = 100

v = [0, 1]

sun = hatch(gold)

sun.slide G, 0

tick 100, ->

 sun.moveto lastclick

 s = sun.getxy()

 p = getxy()

 d = distance(sun)

 d3 = d * d * d

 if d3 > 0 then for i in [0..1]

 v[i] += G * (s[i] - p[i]) / d3

 slide v[0], v[1]

19. Concurrency

Race Condition
b = hatch blue

r = hatch red

b.lt 90; b.pen blue

b.play 'g'

b.rt 170, 50

b.dot 50, blue

r.rt 90; r.pen red

r.play 'd'

r.lt 170, 50

r.dot 50, red

Line Follower
dot orange, 220

dot white, 180

jump 100, 0

pen skyblue

while true

 fd 3 + random 3

 await done defer()

 if touches orange

 lt 5

 else

 rt 5

Shared Memory
shared = { d: 0 }

do ->

 while true

 await read defer shared.d

do ->

 pen red

 while true

 fd 10

 await done defer()

 rt shared.d

Message Passing
button 'send color', ->

 send 'go', random color

do ->

 for x in [1..25]

 await recv 'go', defer c

 pen c

 fd 50

 rt 88, 10

⇒ 30

⇒ -20

⇒

send color

Outlined.

Fancy!

Before

After

D e c o r a t e d

20. Styles

Thick Lines
pen blue, 10

fd 100; rt 90

pen pink, 3

fd 50; rt 90

pen 'orange ' +

 'lineWidth 10 ' +

 'lineCap square'

fd 100; rt 90

pen black

fd 50

Border
text = write 'Outlined.'

text.css { border: '2px solid red' }

turtle.css { border: '3px dotted blue' }

Font
h = write 'Fancy!'

h.css

 font: '55px Helvetica'

 fontStyle: 'italic'

Text Decoration
write 'Before'

d = write 'Decorated'

write 'After'

d.css

 display: 'inline-block'

 cursor: 'pointer'

 padding: '10px'

 margin: '-5px'

 opacity: '0.7'

 color: 'white'

 fontSize: '110%'

 letterSpacing: '5px'

 textDecoration: 'underline'

 boxShadow: '1px 1px black'

 background: 'mediumaquamarine'

 transform: 'rotate(10deg)translateX(20px)'

Stylesheet

Tag Styles

style specific tags

Class a

Class b

Classes apply to any tag.

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19

20 21 22 23 24

a v c a do o

21. Selectors

Tags
write """<style>

h2 { color: red; }

h3 { background: bisque; }

</style>

"""

write "<h2>Stylesheet</h2>"

write "<h3>Tag Styles</h3>"

write "<h3>style specific tags</h3>"

Classes
write """

<style>

.a { text-decoration: underline; }

.b { font-style: italic; }

</style>

"""

write "<p class='a'>Class a</p>"

write "<h3 class='b'>Class b</h3>"

write "<p class='b'>Classes apply to any tag.</p>"

Composites
write """

<style>

i { border: 1px solid black; margin: 2px;

 display:inline-table }

i:nth-of-type(1) { background: gold }

i:nth-of-type(2n+4) { background: skyblue }

i:nth-of-type(3n+9) { background: thistle }

</style>

"""

for x in [1..24]

 write "<i>#{x}</i>"

jQuery
write "<p><mark>a</mark>v<mark>o</mark>" +

 "c<mark>a</mark>d<mark>o</mark></p>"

$('p').css { fontSize: '200%' }

$('mark').css { background: palegreen }

$('mark').animate {

 padding: '5px' }

$('mark:nth-of-type(2n)').animate {

 opacity: 0.3 }

Touch This

22. Events

Shift Click
$(document).click (event) ->

 see event

 if event.shiftKey

 pen blue

 else

 pen null

 moveto event

Arrow Keys
pen plum

[L, R, U, D] = [37, 39, 38, 40]

keydown (event) ->

 if event.which is L then lt 5

 if event.which is R then rt 5

 if event.which is U then fd 5

 if event.which is D then bk 5

Can't Touch This
t = write "<button>Touch This</button>"

t.speed Infinity

t.moveto document

t.mousemove (event) ->

 t.rt random(91) - 45

 while t.touches(event)

 t.bk 1

Magic Hat
speed Infinity

turtle.remove()

t = write ''

t.home()

start = ->

 t.wear 'openicon:magic-tophat'

 tick off

 t.click (event) -> play()

play = ->

 t.wear 'openicon:animals-rabbit'

 tick ->

 t.moveto random 'position'

 t.click (event) -> start()

start()

small vanilla cone
small vanilla cup
small chocolate cone
small chocolate cup
medium vanilla cone
medium vanilla cup
medium chocolate cone
medium chocolate cup
large vanilla cone
large vanilla cup
large chocolate cone
large chocolate cup

J♦/3♠/7♣/9♥/6♠

3♥/10♦/7♥/7♦/8♥
A♦/Q♥/2♣/8♠/K♦

attack at dawn

NGGNPX NG QNJA

23. Slicing

Choices
choices = (menu, sofar = []) ->

 if menu.length is 0

 write sofar.join ' '

 else for item in menu[0]

 choices menu[1...],

 sofar.concat item

choices [

 ['small', 'medium', 'large']

 ['vanilla', 'chocolate']

 ['cone', 'cup']

]

Shuffle
suits = ['\u2663', '\u2666', '\u2665', '\u2660']

deck = []

for v in [2..10].concat ['J', 'Q', 'K', 'A']

 deck.push (v + s for s in suits)...

shuffle = (d) ->

 for i in [1...d.length]

 choice = random(i + 1)

 [d[i], d[choice]] = [d[choice], d[i]]

deal = (d, n) -> d.splice(-n)

shuffle deck

for [1..3]

 write deal(deck, 5).join('/')

Caesar Cipher
key = 13

a2z = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

rot = a2z[key...].concat a2z[...key]

box = write '<input>'

out = write ''

box.keyup ->

 result = for c in box.val()

 char = c.toUpperCase()

 if char in a2z

 rot[a2z.indexOf char]

 else

 char

 out.text result.join ''

3,4,4,5,6,7,7,8

S,O,R,T,M,E
O,S,R,T,M,E
O,S,R,T,M,E
O,S,R,T,M,E
M,S,R,T,O,E
E,S,R,T,O,M
E,R,S,T,O,M
E,R,S,T,O,M
E,O,S,T,R,M
E,M,S,T,R,O
E,M,S,T,R,O
E,M,R,T,S,O
E,M,O,T,S,R
E,M,O,S,T,R
E,M,O,R,T,S
E,M,O,R,S,T

24. Sorting

Quick Sort
list = (random 10 for [1..8])

list.sort()

write list

Slow Selection Sort
show = (points, highlight) ->

 render = for k, v of points

 if Number(k) in highlight

 "<mark>#{v}</mark>"

 else

 "#{v}"

 write "<div>#{render.join ','}</div>"

list = 'SORTME'.split ''

show list, []

for i in [0 ... list.length - 1]

 for j in [i + 1 ... list.length]

 if list[i] > list[j]

 [list[i], list[j]] =

 [list[j], list[i]]

 show list, [i, j]

Custom Quick Sort
sketch = (points) ->

 cg()

 pen null

 for p in points

 moveto p

 pen red

 dot black

array = []

button 'scatter', ->

 array = for [1..10]

 random 'position'

 sketch array

button 'sort', ->

 array.sort (a, b) ->

 a.pageX - b.pageX

 sketch array

scatter sort

25. Search

Maze
[width, height] = [9, 9]

grid = table(width, height).home()

sides = [

 {dx: 0, dy: -1, ob: 'borderTop', ib: 'borderBottom'}

 {dx: 1, dy: 0, ob: 'borderRight', ib: 'borderLeft'}

 {dx: 0, dy: 1, ob: 'borderBottom', ib: 'borderTop'}

 {dx: -1, dy: 0, ob: 'borderLeft', ib: 'borderRight'}

]

isopen = (x, y, side) ->

 return /none/.test(

 grid.cell(y, x).css side.ob)

isbox = (x, y) ->

 return false unless (

 0 <= x < width and

 0 <= y < height)

 for s in sides

 if isopen x, y, s

 return false

 return true

makemaze = (x, y) ->

 loop

 adj = (s for s in sides when isbox x + s.dx, y + s.dy)

 if adj.length is 0 then return

 choice = random adj

 [nx, ny] = [x + choice.dx, y + choice.dy]

 grid.cell(y, x).css choice.ob, 'none'

 grid.cell(ny, nx).css choice.ib, 'none'

 makemaze nx, ny

wander = (x, y, lastdir) ->

 moveto grid.cell y, x

 for d in [lastdir + 3 .. lastdir + 7]

 dir = d % 4

 s = sides[dir]

 if isopen x, y, s then break

 turnto grid.cell y + s.dy, x + s.dx unless dir is lastdir

 plan -> wander x + s.dx, y + s.dy, dir

makemaze 0, 0

speed 5

wander 4, 4, 0

O

X

26. Intelligence

Tic Tac Toe
grid = table 3, 3,

 {width: 48, height: 48, font: "32px Arial Black", background: "wheat"}

grid.home()

board = [0, 0, 0, 0, 0, 0, 0, 0, 0]

grid.cell().click ->

 move = grid.cell().index this

 return unless winner() is 0 and board[move] is 0

 board[move] = 1

 $(this).text 'X'

 setTimeout respond, 500

respond = ->

 response = bestmove(-1).move

 if response?

 board[response] = -1;

 grid.cell().eq(response).text 'O'

 colorwinner()

bestmove = (player) ->

 win = winner()

 if win isnt 0 then return {move: null, advantage: win}

 choices = {'-1': [], '0': [], '1': []}

 for think in [0..8] when board[think] is 0

 board[think] = player

 outcome = bestmove(-player).advantage

 choices[outcome].push {move: think, advantage: outcome}

 board[think] = 0

 for favorite in [player, 0, -player] when choices[favorite].length

 return random choices[favorite]

 return {move: null, advantage: 0}

rules = [[0,1,2],[3,4,5],[6,7,8],[0,3,6],[1,4,7],[2,5,8],[0,4,8],[2,4,6]]

winner = ->

 for row in rules

 if board[row[0]] and board[row[0]] is board[row[1]] is board[row[2]]

 return board[row[0]]

 return 0

colorwinner = ->

 for row in rules

 if board[row[0]] and board[row[0]] is board[row[1]] is board[row[2]]

 for n in row

 grid.cell().eq(n).css {color: red}

Appendix

Hangman

One Project in Detail

In this section, we use Pencil Code to make a game of hangman from
scratch.

It takes a couple hours to learn enough programming to make a game of
hangman.

We will learn about:
Memory and naming
Computer arithmetic

Using functions
Simple graphics
How to make a program
Input and output
Loops and choices

Delays and synchronization
Connecting to the internet

At the end we will have a game we can play.

1. Running Pencil Code

Go to pencilcode.net.

Click on "Let's Play!"

The screen should look like this:

The left side of the screen is where you type in your program, and the right
is where programs run. The lower right corner is a test panel where you

type code and run it right away.

While exploring the projects in this book, you can also use the test panel in
the lower right corner to ask for help with how commands work.

 test panel (type help for help)

> help

 help is available for: bk cg cs ct fd ht if ln lt rt st abs cos dot

 ...

>

The characters that you should type will be highlighted.

Press Enter after you type help .

http://pencilcode.net/

2. Keeping a Secret

We will begin by working in the test panel.

CoffeeScript can remember things. Let's tell it a secret word.

Type the blue words below into the test panel.

 test panel (type help for help)

> secret = 'crocodile'

See what happens when you press Enter.

 test panel (type help for help)

> secret = 'crocodile'

 "crocodile"

>

Reveal your secret by typing "write secret".

> write secret

>

Check the upper right panel!

Typing just the name in the test panel will reveal the word there.

> secret

 "crocodile"

>

Now try something CoffeeScript doesn't know. Try typing "number".

> number

 ▶number is not defined

>

Don't worry. This is fine. You just need to teach CoffeeScript what

"number" is and try again.

> number = 43

 43

> number

 43

>

3. Computers are Fine Calculators

A computer is better than any calculator at doing math. Let's try.

> 2+33+66

 101

In CoffeeScript, plus and minus use the usual symbols + and −. Times and

divide are done using the * and / symbol.

> 33333333 * 44444444 / 22

 67340065993266

Named values can be used in formulas.

> n=123456789

 123456789

> n*n*n

 1.8816763717891548e+24

The e+24 at the end is the way that large numbers are written in
CoffeeScript. It means 1.8816763717891548 × 10 . CoffeeScript

calculates numbers with 15 digits of precision.

There are several ways to change a number. For example, += changes a
variable by adding to it.

> n += 1

 123456790

> n

 123456790

>

Some symbols to know:

code meaning

+ plus

− minus

* times

/ divide

code meaning

x = 95 save 95 as x

x is 24 is x equal to 24?

x < 24 is x less than 24?

x > 24 is x more than 24?

code meaning

'a' in word does the word contain an 'a'?

String(num) turns num into a string of digits

Number(digits) makes a number from a string

n += 1 change n by adding one

These operations can be combined.

CoffeeScript obeys the same order of operations used in Algebra.

What will it say for (2 * 3 + 3 * 5) / 7 - 1 ?

What will it do when we try '7' in String(99 * 123) ?

Try your own fancy formulas. Don't worry if you get errors.

24

4. Strings and Numbers

What do you think happens when we try to do addition with words?

> 'dog' + 'cat'

 dogcat

> 'dog' + 5

 dog5

> 34 + 5

 39

> '34' + 5

 345

>

When we put something inside quotes, CoffeeScript treats it like a string of
letters, even if it is all digits! That is why '34' + 5 is 345. Quoted values like

this are called "strings."

The Number() function can be used to convert a string to a number, so that

we can do ordinary arithmetic with it.

The String() function is opposite, and turns numbers into strings.

> Number('34') + 5

 39

> String(34) + 5

 345

> Number('dog') + 5

 NaN

>

If we try to convert a string to a number in a way that does not make sense,

we get NaN, which stands for "Not a Number".

5. Creating Graphics

In Pencil Code, we can create graphics by using the turtle. There are five
basic turtle functions:

code meaning

pen red chooses the pen color red

fd 100 moves forward by 100 pixels

rt 90 turns right by 90 degrees

lt 120 turns left by 120 degrees

bk 50 slides back by 50 pixels

In the test panel, enter two commands to draw a line:

> pen red

> fd 50

>

The reference at the end of this book lists many other colors that can be
used. To stop drawing, use "pen null" to select no pen.

Try turning the turtle and drawing another line. Notice that rt turns the
turtle in place, and we need to move the turtle with fd to draw a corner.

 ...

> rt 90

> fd 100

>

Read about the rt function using help:

> help rt

 rt(degrees) Right turn. Pivots clockwise by some degrees: rt 90

 rt(degrees, radius) Right arc. Pivots with a turning radius:

 rt 90, 50

>

If we give a second number to rt, the turtle will move while turning and
form an arc. Try making a circle:

 ...

> rt 360, 30

>

Remember to put a comma between the two numbers.

6. Making our First Program

We are ready to set up a hangman game. In the the editor on the left side of
Pencil Code:

Select and erase the example program text in the editor.
Now type the following program into the editor.

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

Press the triangular play button!

If it doesn't work, check the typing carefully and try again. Things to watch
out for:

Spell each function name correctly and in lowercase.
Do not indent any of the lines of this program.
Remember to put a space after the function names.

Each time we run the program, it clears the screen and starts again.

Now, rename the program from "first" to "hangman" by editing the name
next to the pencil. Save it with the button at the top right.

A website will be created with your account name. If I choose the account

name "newbie," a website is created at "newbie.pencilcode.net".

Once you have saved the program with the name "hangman," it is available

at two different addresses on pencilcode:
http://yourname.pencilcode.net/edit/hangman - this is where anyone
can see and edit your program, but you need your password to save
any changes.

http://yourname.pencilcode.net/home/hangman - here is where you
can share and run your program without showing the code.

7. Hurry Up and Wait

Write a welcome message after drawing the hangman shape:

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

write 'time to play hangman'

Notice that the Pencil Code Turtle is as slow as a turtle! Unless we speed it

up with the speed function, the turtle takes its own slow time long after we
have asked it to move, and the welcome message appears before the turtle
is finished.

We can do two things to help with the slow turtle:
Change the number of moves it makes per second using "speed."
Ask the program to wait for the turtle, using "await done defer()."

speed 10

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

await done defer()

write 'time to play hangman'

Now the turtle moves faster, and the program waits until the turtle is done
before writing the welcome message.

A couple things to know:
Do not use a space between defer and the parentheses "defer()".
We can make the turtle move instantly by using "speed Infinity".

Even if you have programmed before, await/defer may be new to you.
These keywords create continuations, and they are part of Iced CoffeeScript.
To explore how they work in more detail, look up Max Krohn's Iced
CoffeeScript page online.

time to play hangman

time to play hangman

8. Using "for" to Repeat

We can repeat steps in a program with the "for" command.

Try adding three lines to the end of our program so that it looks like this:

write 'time to play hangman'

secret = 'crocodile'

for letter in secret

 write letter

You should see this:

time to play hangman

c

r

o

c

o

d

i

l

e

The program is saying: for every letter in the secret, write letter. So the
computer repeats "write letter" nine times, once for each letter.

If it doesn't work, check the program and make sure the line after the for is
indented; that is how CoffeeScript knows which line to repeat.

Once you have the hang of it, keep the word secret by changing the

program to write underscores instead of letters:

write 'time to play hangman'

for letter in secret

 append '_ '

Notice how "append" instead of "write" puts text on the same line instead of
starting a new line each time:

time to play hangman

_ _ _ _ _ _ _ _ _

9. Using "if" to Choose

In our hangman game, we should show where any guessed letters are. To
decide whether to print a blank line or a letter, we will need to use "if" and
"else".

Add four new lines to our program:

write 'time to play hangman'

secret = 'crocodile'

show = 'aeiou'

for letter in secret

 if letter in show

 append letter + ' '

 else

 append '_ '

Don't forget to line everything up, and remember to save it.

What happens when you run it? It reveals all the letters in "show": all the
vowels.

Our screen looks like this:

time to play hangman

_ _ o _ o _ i _ e

Here is how it works.

The line "if letter in show" makes a choice.
If the letter is among our shown, it appends the letter together with a

space after it.
Otherwise ("else") it appends a little underscore with a space after it.

Since the whole thing is indented under the "for letter in secret," this choice
is repeated for every letter.

Check the spelling and spacing and punctuation if you get errors. Take
your time to get it to work.

10. Input with "read"

Our game is no good if players can't guess. To let the player guess, type:

It works like this:

await read defer guess

"read" opens an input box and collects the input.

The "await" and "defer" commands work together to make the program
wait until the read function is done.

"guess" is the name of the input collected by "read".

Try adding these lines to the program:

write 'time to play hangman'

secret = 'crocodile'

show = 'aeiou'

write 'guess a letter'

await read defer guess

show += guess

for letter in secret

 if letter in show

 append letter + ' '

 else

 append '_ '

Adding "write 'guess a letter'" will let the player know when to enter a

guess.

The "show += guess" line adds the guess to the string of shown letters.

Let's run it.

time to play hangman

guess a letter

⇒ c

c _ o _ o _ i _ e

When we run the program, it will show us where our guessed letter
appears.

11. Using "while" to Repeat

We need to let the player take more than one turn.

"while turns > 0" repeats everything indented under it while the player still
has turns left.

write 'time to play hangman'

secret = 'crocodile'

show = 'aeiou'

turns = 5

while turns > 0

 for letter in secret

 if letter in show

 append letter + ' '

 else

 append '_ '

 write 'guess a letter'

 await read defer guess

 show += guess

 turns -= 1

Indent everything under the "while" command to make this work.

The editor will indent a whole block of code if you select it all at once and
press the "Tab" key on the keyboard. "Shift-Tab" will unident code.

"turns -= 1" means subtract one from "turns". It will count down each time
the player guesses. When "turns" is finally zero, the "while" command will
stop repeating.

Try running the program. Does it work?

Any time we want to see the value of a variable, we can type its name into
the test panel.

 test panel (type help for help)

> show

 aeioucsn

> turns

 2

>

How would you give the player more guesses?

12. Improving our Game

We can already play our game. Now we should fix it up to make it fun.
The player should win right away when there are no missing letters.
The player should only lose a turn on a wrong guess.

When the player loses, the game should tell the secret.

Try this:

write 'time to play hangman'

secret = 'crocodile'

show = 'aeiou'

turns = 5

while turns > 0

 blanks = 0

 for letter in secret

 if letter in show

 append letter + ' '

 else

 append '_ '

 blanks += 1

 if blanks is 0

 write 'You win!'

 break

 write 'guess a letter'

 await read defer guess

 show += guess

 if guess not in secret

 turns -= 1

 write 'Nope.'

 write turns + ' more turns'

 if turns is 0

 write 'The answer is ' + secret

Each time the word is printed, the "blanks" number starts at zero and

counts up the number of blanks. If it ends up at zero, it means there are no
blanks. So the player has guessed every letter and has won! In that case,
the "break" command breaks out of the "while" section early, even though
there are still turns left.

The "if guess not in secret" line checks if the guess was wrong. We only
count down the "turns" if our guess was wrong.

When we guess wrong, we also print a bunch of messages like "Nope" and
how many more turns we have. When we are wrong for the last time we
print the secret.

13. Making it Look Like Hangman

It will be more fun if we make our game look like Hangman.

All we need to do is draw parts of the poor hangman person when there is a

wrong guess. Try adding something like this to the wrong guess part:

...

 write 'Nope.'

 write turns + ' more turns'

 if turns is 4 then lt 90; rt 540, 10; lt 90

 if turns is 3 then fd 20; lt 45; bk 30; fd 30

 if turns is 2 then rt 90; bk 30; fd 30; lt 45; fd 30

 if turns is 1 then rt 45; fd 30

 if turns is 1 then fd 30

 if turns is 0

 bk 30; lt 90; fd 30

 await done defer()

 write 'The answer is ' + secret

The semicolons (;) let you put more than one step on the same line. Notice
when putting the "if" on the same line as the commands to run, we must
use the word "then" between the test and the commands.

Try making variations on the hangman drawings for each step.

Whenever we want to pause the program to wait for the turtle to finish
drawing, we can use "await done defer()".

14. Picking a Random Secret

The only problem with the game is that it always plays the same secret

word. We should use the random function to choose a random word.

Change the line that sets the secret so that it looks like this:

...

write 'time to play hangman'

secret = random ['tiger', 'panda', 'mouse']

show = 'aeiou'

...

The square brackets [] and commas make a list, and the random function
picks one thing randomly from the list.

Of course, we can make the list as long as we like. Here is a longer list:

...

write 'time to play hangman'

secret = random [

 'crocodile'

 'elephant'

 'penguin'

 'pelican'

 'leopard'

 'hamster'

]

...

The brackets do not have to be on the same line, but we do need two!
When we list items on their own lines, the commas are optional.

15. Loading a List from the Internet

There is a longer list of animals on the internet at the address
http://pencilcode.net/data/animals.

We can load this data using a jQuery function "$.get". (Read more about
jQuery at learn.jquery.com.)

The code looks like this:

...

write 'time to play hangman'

await $.get 'http://pencilcode.net/data/animals', defer animals

secret = random animals.split '\n'

...

What this means is:

await $.get 'http://pencilcode.net/data/animals', defer animals

Pause the program until the $.get is done.

await $.get 'http://pencilcode.net/data/animals', defer animals

Open up the address http://pencilcode.net/data/animals

await $.get 'http://pencilcode.net/data/animals', defer animals

Tell $.get to resume the program after putting the answer in "animals."

secret = random animals.split '\n'

The special string '\n' is the newline character between lines in a file.

Notice that the "\" is a backslash, not the ordinary slash.

secret = random animals.split '\n'

Split the animals string into an array, with one entry per line.

secret = random animals.split '\n'

Choose one item from the array randomly.

secret = random animals.split '\n'

Call this random word "secret".

http://pencilcode.net/data/animals
http://learn.jquery.com/

16. The Whole Hangman Program

Here is the whole program from beginning to end:

speed 10

pen blue

fd 150

rt 90

fd 50

rt 90

fd 20

await done defer()

write 'time to play hangman'

await $.get 'http://pencilcode.net/data/animals', defer animals

secret = random animals.split '\n'

show = 'aeiou'

turns = 5

while turns > 0

 blanks = 0

 for letter in secret

 if letter in show

 append letter + ' '

 else

 append '_ '

 blanks += 1

 if blanks is 0

 write 'You win!'

 break

 write 'guess a letter'

 await read defer guess

 show += guess

 if guess not in secret

 turns -= 1

 write 'Nope.'

 write turns + ' more turns'

 if turns is 4 then lt 90; rt 540, 10; lt 90

 if turns is 3 then fd 20; lt 45; bk 30; fd 30

 if turns is 2 then rt 90; bk 30; fd 30; lt 45; fd 30

 if turns is 1 then rt 45; fd 30

 if turns is 0

 bk 30; lt 90; fd 30

 await done defer()

 write 'The answer is ' + secret

17. Making it Yours

The best part of programming is adding your own personal style.

Try making the game so that it plays again automatically after you are

done. Can you make the game harder or easier? Can you give the player a
reward for winning?

Be sure to explore the functions in the online help, and experiment with the
examples in the remainder of this book.

For example, you can add sound effects and music. Try exploring the "play"
function, and search the internet to learn about ABC notation, chords,
waveforms, and ADSR envelopes.

Sometimes the simplest ideas can make a big difference. The "ct()" function
clears the text on the screen and the "cg()" function clears the graphics.
Maybe this could be used to make a two-player game where one person
comes up with the secret word, or where two players compete to guess the

word first.

You will soon find that the real fun of programming is in putting your

imagination into the code.

Next Steps

Here are a few other places to go to learn more.

Learn more about programming in CoffeeScript with the book Smooth
CoffeeScript, by E. Hoigaard (based on the book Eloquent JavaScript, by
Marijn Haverbeke).

The await and defer keywords are explained well on Max Krohn's Iced
CoffeeScript homepage (search on Google).

The website guide.pencilcode.net has more example programs and
reference material to use with Pencil Code.

Pencil Code is based on open web standards HTML5 and CSS3. HTML is a
rich subject. There are more than 100 types of HTML elements, more than
100 HTML attributes, more than 100 CSS properties, and an expanding set

of standard functions. The best way to explore all these options is to search
on Google and consult the many books and resources on the Internet
about these standards.

Pencil Code is also built on jQuery, which is the most popular open-source
AJAX library for building browser-based web applications. Every turtle is a
jQuery object, and a Pencil Code program can use $. Learn about jQuery at

learn.jquery.com.

When you have further questions, turn to the Pencil Code discussion

group at pencilcode.net/group, or look to the superb technical community
on StackOverflow at stackoverflow.com.

http://autotelicum.github.io/Smooth-CoffeeScript/
http://maxtaco.github.io/coffee-script/
http://guide.pencilcode.net/
http://learn.jquery.com/
http://pencilcode.net/group
http://stackoverflow.com/

Reference

Movement
fd 50 forward 50 pixels

bk 10 backward 10 pixels

rt 90 turn right 90 degrees

lt 120 turn left 120 degrees

home() go to the page center

slide x, y slide right x and forward y

moveto x, y go to x, y relative to home

turnto 45 set direction to 45 (NE)

turnto obj point toward obj

speed 30 do 30 moves per second

Appearance
ht() hide the turtle

st() show the turtle

scale 8 do everything 8x bigger

wear yellow wear a yellow shell

fadeOut() fade and hide the turtle

remove() totally remove the turtle

Output
write 'hi' adds HTML to the page

p = write 'fast' remembers written HTML

p.html 'quick' changes old text

button 'go',

-> fd 10

adds a button with
an action

read (n) ->

write n*n

adds a text input with
an action

t = table 3,5 adds a 3x5 <table>

t.cell(0, 0).

text 'aloha'

selects the first cell of the
table and sets its text

Other Objects
$(window) the visible window

$('p').eq(0) the first <p> element

$('#zed') the element with id="zed"

Drawing
pen blue draw in blue

pen red, 9 9 pixel wide red pen

pen null use no color

pen off pause use of the pen

pen on use the pen again

mark 'X' mark with an X

dot green draw a green dot

dot gold, 30 30 pixel gold circle

pen 'path' trace an invisible path

fill cyan fill traced path in cyan

Properties
turtle name of the main turtle

getxy() [x, y] position relative to home

direction() direction of turtle

hidden() if the turtle is hidden

touches(obj) if the turtle touches obj

inside(window) if enclosed in the window

lastmousemove where the mouse last moved

Sets
g = hatch 20 hatch 20 new turtles

g = $('img') select all as a set

g.plan (j) ->

 @fd j * 10

direct the jth turtle to go
forward by 10j pixels

Other Functions
see obj inspect the value of obj

speed 8 set default speed

rt 90, 50 90 degree right arc of radius 50

tick 5, -> fd 10 go 5 times per second

click -> fd 10 go when clicked

random [3,5,7] return 3, 5, or 7

random 100 random [0..99]

play 'ceg' play musical notes

Colors
white gainsboro silver darkgray gray dimgray black

whitesmoke lightgray lightcoral rosybrown indianred red maroon

snow mistyrose salmon orangered chocolate brown darkred

seashell peachpuff tomato darkorange peru firebrick olive

linen bisque darksalmon orange goldenrod sienna darkolivegreen

oldlace antiquewhite coral gold limegreen saddlebrown darkgreen

floralwhite navajowhite lightsalmon darkkhaki lime darkgoldenrod green

cornsilk blanchedalmond sandybrown yellow mediumseagreen olivedrab forestgreen

ivory papayawhip burlywood yellowgreen springgreen seagreen darkslategray

beige moccasin tan chartreuse mediumspringgreen lightseagreen teal

lightyellow wheat khaki lawngreen aqua darkturquoise darkcyan

lightgoldenrodyellow lemonchiffon greenyellow darkseagreen cyan deepskyblue midnightblue

honeydew palegoldenrod lightgreen mediumaquamarine cadetblue steelblue navy

mintcream palegreen skyblue turquoise dodgerblue blue darkblue

azure aquamarine lightskyblue mediumturquoise lightslategray blueviolet mediumblue

lightcyan paleturquoise lightsteelblue cornflowerblue slategray darkorchid darkslateblue

aliceblue powderblue thistle mediumslateblue royalblue fuchsia indigo

ghostwhite lightblue plum mediumpurple slateblue magenta darkviolet

lavender pink violet orchid mediumorchid mediumvioletred purple

lavenderblush lightpink hotpink palevioletred deeppink crimson darkmagenta

