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Abstract
In the Online Dial-a-Ride Problem (OLDARP), a server travels to serve requests for 
rides. We consider a variant where each request specifies a source, destination, release 
time, and revenue that is earned for serving the request. The goal is to maximize the total  
revenue earned within a given time limit. We first prove that no non-preemptive deter-
ministic online algorithm can be guaranteed to earn more than half the revenue earned 
by opt. We then investigate the segmented best path (sbp) algorithm (of Christman 
et al. in Revenue maximization in online dial-a-ride 2017, [1]). The previously estab-
lished lower and upper bounds for the competitive ratio of sbp are 4 and 6, respectively, 
under reassumptions about the input instance. We eliminate the gap by proving that 
the competitive ratio is 5 (under the same assumptions) and also prove that this bound 
is tight. When revenues are uniform, we prove that sbp has competitive ratio 4. Next 
we provide a competitive analysis of sbp on complete bipartite graphs. We then con-
sider this problem on the uniform metric and revisit the bp  algorithm (of Christman 
et al. in Revenue maximization in online dial-a-ride 2017, [1]); we provide an instance 
where the algorithm’s competitive ratio is unbounded. We conclude with experimental  
results that suggest that sbp would be effective if applied in practice.

1  Introduction

In the Online Dial-a-Ride Problem (OLDARP), a server travels through a graph to 
serve requests for rides. Each request specifies a source, which is the pick-up (or 
start) location of the ride, a destination, which is the delivery (or end) location, 
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and the release time, which is the earliest time the request may be served. Requests 
arrive over time; specifically, each arrives at its release time and the server must 
decide whether to serve the request and at what time, with the goal of meeting some 
optimality criterion. The server has a capacity that specifies the maximum number 
of requests it can serve at any time. Common optimality criteria include minimiz-
ing makespan (i.e., time the server has completed the last request), minimizing the 
average flow time (i.e., the difference in a request’s completion and release times), 
or maximizing the number of served requests within a specified time limit. In many 
variants preemption is not allowed, so if the server begins to serve a request, it must 
do so until completion. Online Dial-a-Ride Problems have many practical applica-
tions in settings where a vehicle is dispatched to satisfy requests involving pick-up 
and delivery of people or goods. Important examples include ambulance routing, 
transportation for the elderly and disabled, taxi services including Ride-for-Hire sys-
tems (such as Uber and Lyft), and courier services.

We study a variation of OLDARP where in addition to the source, destination and 
release time, each request also has a priority and there is a time limit within which 
requests must be served. The server has unit capacity and the goal for the server is to 
serve requests within the time limit so as to maximize the total priority. A request’s 
priority may represent the importance of serving the request in settings such as cou-
rier services. In more time-sensitive settings such as ambulance routing, the priority 
may represent the urgency of a request. In profit-based settings, such as taxi and 
ride-sharing services, a request’s priority may represent the revenue earned from 
serving the request. For the remainder of this paper, we will refer to the priority as 
“revenue,” and to this variant of the problem as ROLDARP. Note that if revenues 
are uniform the problem is equivalent to maximizing the number of served requests.

1.1 � Related Work

The Online Dial-a-Ride problem was introduced by Feuerstein and Stougie [3] and  
several variations of the problem have been studied since. For a comprehensive sur-
vey on these and many other problems in the general area of vehicle routing, see [4] 
and [5]. There are two versions of the problem: closed where the server must return 
to the origin after serving requests, and open where the server need not do so. Many 
objectives have been considered for these problems and the terminology varies in 
the related studies. For consistency, we will use the terminology introduced in [3]  
where makespan refers to the time the server has completed the last request (and 
returned to the origin in the closed version) and latency refers to the average completion  
time of requests (where completion time is the time at which the server arrives at 
the destination of the request). Feuerstein and Stougie studied the closed version 
for these two objectives. For minimizing makespan, they showed that any deter-
ministic algorithm must have competitive ratio of at least 2 regardless of the server 
capacity. They presented algorithms for the cases of finite and infinite capacity with 
competitive ratios of 2.5 and 2, respectively. For minimizing latency, they proved 
lower bounds of 3 and 1 +

√
2 when the server has capacity 1 and greater than 1,  

respectively. They also presented a 15-competitive algorithm on the real line for infinite  
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capacity. Several studies have considered the open version with the objective of mini-
mizing makespan, and we list a few here. Krumke et al. presented a 3.41-competitive 
algorithm for the general metric space [6]. More recently, Birx et al.  [7] presented a 
new upper bound of 2.67 for the smartstart algorithm of [8] for the real line, which 
improves their previous bound of 2.94 [9] (the full version of this work is [10]). Bjelde 
et al. [11] present a preemptive algorithm with competitive ratio 2.41 on the real line. 
The Online Traveling Salesperson Problem (OLTSP), introduced by Ausiello et al. [12] 
is a special case of OLDARP where for each request the source and destination are the 
same location. Krumke et al. [13] studied both OLDARP and OLTSP for the uniform 
metric space with the objective of minimizing the maximum flow time, that is the dif-
ference between a request’s release and service times. They proved that no competitive  
algorithm exists for OLDARP and gave a 2-competitive algorithm to solve OLTSP.

Also related to the problem we study is the Online Prize Collecting Traveling 
Salesman Problem (PCTSP) [14], where the server visits a set of cities where cit-
ies arrive over time and each city has a given prize and penalty. Ausiello et al. [15] 
presented a 7/3-competitive algorithm for this problem when the goal is to collect a 
given quota of prizes of cities and return to the origin while minimizing the length 
of the tour plus the penalties of the cities not in the tour.

In this paper, we study a variation of OLDARP that has relevance to modern-
day on-demand transportation systems. Each request has a revenue that is earned 
if the request is served and the goal is to maximize the total revenue earned within 
a specified time limit; the offline version of the problem was shown to be NP-hard 
in [1]. More recently, it was shown that even the special case of the offline version 
with uniform revenues and uniform weights is NP-hard [16]. Christman et al. [17] 
presented a 2-competitive algorithm for this problem on graphs with uniform edge 
weights. In [1], we showed that if edge weights may be arbitrarily large, then regard-
less of revenue values, no deterministic algorithm can be competitive. We therefore 
considered graphs where edge weights are bounded by a fixed fraction of the time 
limit,  (a natural subclass of inputs since in real-world dial-a-ride systems, drivers 
would be unlikely to spend a large fraction of their day moving to or serving a single 
request) and gave a 6-competitive algorithm. To our knowledge, despite its relevance 
to modern transportation systems, aside from the work in [1], the revenue-maximiz-
ing time-limited version of OLDARP on weighted graphs that we investigate in this 
paper has not been previously studied.

1.2 �  Our Results

In this work we begin with a general lower bound for ROLDARP; specifically, we 
show that no non-preemptive deterministic online algorithm can be better than 
2-competitive. We then study the segmented best path  (sbp) algorithm ([1, 2]), 
which currently yields the best competitive ratio for ROLDARP; we improve this 
ratio and prove that our new ratio is tight. Specifically, in [1], we showed that sbp’s 
competitive ratio has lower bound 4 and upper bound 6, provided that the edge 
weights are bounded by a fixed fraction of the time limit, i.e., T/f where T is the 
time limit and 1 < f < T  , and that the revenue earned by the optimal offline solution 
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(opt) in the last 2T/f time units is bounded by a constant. The first assumption is 
imposed because, as shown in [1], no non-preemptive deterministic online algorithm 
can be guaranteed to be constant-competitive for this problem if edge-weights are 
unbounded. Note that this assumption is natural in real-world systems where driv-
ers wish to limit ride durations to some fraction, 1/f, of the length of their day. The 
second assumption is imposed because, as we show in Lemma 1, no non-preemptive 
deterministic online algorithm can be guaranteed to earn this revenue. We note that 
as T grows, the significance of the revenue earned by opt in the last two time seg-
ments diminishes.

In this work, we close the gap between the upper and lower bounds of sbp by 
providing an instance where the lower bound is 5 (Section 3.1) and a proof for an 
upper bound of 5 (Section 3.2). We note that another interpretation of our result is 
that under a weakened-adversary model where opt has two fewer time segments 
available, while sbp has the full time limit T, sbp is 5-competitive. We then inves-
tigate the problem for uniform revenues (so the objective is to maximize the total 
number of requests served), which is a useful variant for settings where all requests 
have equal priorities such as not-for-profit services that provide transportation to 
elderly and disabled passengers and courier services where deliveries are not prior- 
itized. We prove that sbp  earns at least 1/4 the revenue of opt, minus an additive 
term linear in f, the number of time segments (Section 4), which is nearly tight due 
to the lower bound of 4 from [1].

Next we consider the problem for complete bipartite graphs; for these graphs 
every source is from the left-hand side and every destination is from the right-hand 
side (Section 5). These graphs model the scenario where only a subset of locations 
may be source nodes and a disjoint subset may be destinations, e.g., in the delivery 
of goods from commercial warehouses only the warehouses may be sources and only 
customer locations may be destinations. We refer to this problem as ROLDARP-B. 
We first show that if edge weights are not bounded by a minimum value, then ROL-
DARP reduces to ROLDARP-B. We therefore impose a minimum edge weight of 
kT/f for some constant k such that 0 < k ≤ 1 (note this reflects real-world settings 
where pickup and drop-off locations are likely to be at least some minimum distance 
away from each other). We show that if revenues are uniform, sbp has competitive 
ratio ⌈1∕k⌉ . Finally, we show that if revenues are nonuniform sbp  has competitive 
ratio ⌈1∕k⌉ , provided that the revenue earned by opt  in the last 2T/f time units is 
bounded by a constant, which is again justified by Lemma 1 which says no non-
preemptive deterministic algorithm can be guaranteed to earn any fraction of what is 
earned by opt in the last 2T/f time units. Table 1 summarizes our results on sbp.

We then consider ROLDARP on the uniform metric space and revisit the best-
path (bp) algorithm of [1]. We provide an instance where bp has an unbounded ratio 
(a surprising result as this algorithm appears to be “smarter” than a 2-competitive 
algorithm proposed in [17]).

Finally, we include experimental results on sbp  and bp. For sbp, we extend our 
experiments from [1] to study the algorithm in more realistic settings where request 
release times and source-destination pairs follow nonuniform distributions. These 
settings were informed by interviews we had with representatives from real-world 
Dial-a-Ride organizations  [18–20]. The results on bp  show that although the 
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algorithm has an unbounded competitive ratio, it outperforms the 2-competitive 
algorithm from [17] on a simulated ROLDARP environment.

2 � Preliminaries

The Revenue Online Dial-a-Ride Problem (ROLDARP) is formally defined as fol-
lows. The input is an undirected complete graph G = (V , E) where V is the set of 
vertices (or nodes) and E = {(u, v) ∶ u, v ∈ V , u ≠ v} is the set of edges. For every 
edge (u, v) ∈ E , there is a weight wu,v > 0 , which represents the distance with the 
server traveling at unit speed. Alternatively, an edge weight can be interpreted as 
the time it takes to traverse the edge.1 One node in the graph, o, is designated as 
the origin and is where the server is initially located (i.e., at time 0). The input also 
includes a time limit T and a sequence of requests, � , that are dynamically issued to 
the server.

Each request is of the form (s, d, t, p) where s is the source node, d is the destina-
tion, t is the time the request is released, and p is the revenue (or priority) earned by 
the server for serving the request. The server does not know about a request until 
its release time t. To serve a request, the server must move from its current location 
x to s, then from s to d. The total time for serving the request is equal to the length 
(i.e., travel time) of the path from x to s to d, and the earliest time a request may be 
released is at t = 0 . The output is a schedule of requests, i.e. a subset of requests and 
the time at which to serve each. A request may not be served earlier than its release 
time and at most one request may be served at any given time. The server is non-
preemptive so once the server decides to serve a request, it must do so until comple-
tion. As in real-world systems (and described in [12]), the server may proceed to the 
source of a request with the “intention” of serving it, but until it begins serving the 
request it may “change its mind” and choose to move from that source location to 
another request instead.

Table 1   Bounds on the sbp algorithm for ROLDARP variants. †This upper bound assumes the optimal 
revenue of the last two time segments is bounded by a constant as justified by Lemma 1. ‡This upper 
bound assumes the number of time segments is constant. ¶This bound is nearly tight as shown by 
the lower bound instance in [1]. ||This bound is tight as shown by Theorem 2. § k is a constant where 
0 < k ≤ 1 and is the ratio between the minimum and maximum edge weights in the graph
Summary of our results on sbp’s competitive ratio �

Uniform Revenue Nonuniform Revenue

Weighted graphs � = 4†‡¶ (Thrm. 4) � = 5†|| (Thrm. 3)
Weighted bipartite graphs � ≤ ⌈1∕k⌉§ (Thrm. 6) � ≤ ⌈1∕k⌉†§ (Thrm. 7)

1  We note that any simple, undirected, connected, weighted graph is allowed as input, with the simple 
pre-processing step of adding an edge wherever one is not present whose weight is the length of the 
shortest path between its two endpoints. We further note that the input can be regarded as a metric space 
if the weights on the edges are expected to satisfy the triangle inequality.
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The goal for the server is to serve requests within the time limit so as to maximize 
the total earned revenue. (The server need not return to the origin and may move 
freely through the graph at any time, even if it is not traveling to serve a request.)

2.1 �  General Lower Bound

We first present a general lower bound for ROLDARP and show that no non-
preemptive deterministic online algorithm can be better than 2-competitive with 
respect to the revenue earned by the optimal offline schedule (ignoring the last two 
time segments; see Lemma 1, below).

Theorem 1  No non-preemptive deterministic online algorithm for ROLDARP can be 
guaranteed to earn more than half the revenue earned by an optimal offline schedule 
in the first T − 2T∕f  time units. This is the case for both the uniform and nonuniform 
revenue variants of ROLDARP.

Proof  Here we prove the theorem for the nonuniform variant; for the proof of the 
uniform variant, please see Section 1 of Appendix. Consider the following instance 
with f = 5 (so there are 5 time segments of length T/f). For simplicity, we let 
X = T∕f ≥ 3 denote the length of a time segment and therefore the maximum dis-
tance between two locations, so T = 5X . All distances are X unless otherwise stated. 
Let opt  denote an optimal offline schedule, let on  denote a deterministic online 
algorithm, and let s0 denote the origin, i.e., the location of on and opt  at time 0. 
Let d(u, v) denote the distance between locations u and v. Let the graph consist of 
s0, ai, bi, ci, di, ei for i = 0, 1, 2, 3, 4 . These nodes are all distance X from each other 
except: 

1.	 d(bi, ci) = 1 , d(ci, di) = X − 1 ( i = 0, 1, 2)
2.	 d(bi, ci) = X − 2 , d(ci, di) = 1 ( i = 3, 4)

At time X, on is either at a node s or heading to a node s. Pick two of a0, a1, a2 that 
are not s. Because the graph is symmetric in indices 0, 1, 2, without loss of general-
ity we can suppose a1, a2 are not s. The significance of this choice is that on cannot 
have driven toward either a1 or a2 starting at a time t1 < X . The adversary releases 
requests r1 = (a1, b1, X, �) and r2 = (a2, b2, X, �) . Note that if no other requests are 
released, on cannot earn any revenue unless it heads toward a1 or a2 at some time. 

1.	 Case: on has not yet made a drive toward a1 or a2 before time 2X + 1 . The adver-
sary releases r3 = (b1, e1, 2X + 1, �) at this time. There is 3X − 1 time remaining 
and that is insufficient to serve more than one of the requests. Thus on earns at 
most � while opt earns 2� via s0, a1, b1, e1 with time 3X.

2.	 Case: on moves from some node toward a1 or a2 at time t1 with 2X ≤ t1 < 2X + 1 . 
We may assume w.l.o.g. on is heading toward a1 . The adversary releases 
r3 = (c2, d2, 2X + 1, �) . When on arrives at a1 at time t1 + X ≥ 3X , there is at most 
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2X time remaining. There is insufficient time for on to serve more than one request. 
Thus on earns at most � while opt earns 2� in time 3X via s0, a2, b2, c2, d2.

3.	 Case: on moves from some node toward a1 or a2 at time t1 with X < t1 < 2X . We 
may assume w.l.o.g. on is heading toward a1 . Then the adversary releases request 
r3 = (b2, e2, 2X, �) . After on arrives at a1 at time t1 + X > 2X , there is strictly less 
than 3X time left and it is impossible for on to serve two requests. Thus on earns 
at most � while opt earns 2� in time 3X via s0, a2, b2, e2.

4.	 Case: on moves from some node at time t1 = X to either a1 or a2 . We may assume 
w.l.o.g. on moves to a1 and arrives there at time 2X. Then the adversary releases 
the requests: r3 = (a3, b3, X + 1, 1) , r4 = (a4, b4, X + 1, 1) . 

a)	 Case: on has not moved toward any of b1, a3, a4 before time 3X − 1 . So 
on is at least X away from these three nodes. Because the graph is sym-
metric in indices 3, 4 we may suppose w.l.o.g. that on is not at or heading 
toward c3 at time 3X − 1 (otherwise on is not at or heading toward c4 ). Then 
release r5 = (c3, d3, 3X − 1, 1) . With time 2X + 1 remaining, it is not possi-
ble for on to serve two of the requests r3, r4, r5 because it takes at least time 
X − 2 + X + X + 1 = 3X − 1 but the time remaining is 2X + 1 < 3X − 1 (since 
X > 3 ). The most on can possibly earn is 1 + � by serving one of r3, r4, r5 along  
with one of r1, r2.

b)	 Case: on heads toward b1 at time 2X ≤ t2 < 3X − 1 . Then release 
r5 = (c3, d3, 3X − 1, 1) . Then on will be at b1 at time t2 + X ≥ 3X . With at  
most 2X time remaining, it is clear that ON can serve at most one more request.  
Again, the most on can earn is 1 + �.

c)	 Case: on heads toward a3 or a4 at time 2X ≤ t2 < 3X − 1 . We may assume 
w.l.o.g. that on heads toward a4 . Then release r5 = (c3, d3, 3X − 1, 1) . Then 
on will be at a4 at time t2 + X ≥ 3X . With at most 2X time remaining, it is 
impossible for on to serve more than one request.

	    In all subcases of Case 4, on earns at most revenue 1 + � . On the other hand, 
opt serves r3 and r5 by traversing s0,a3 , waiting time 1, and then traversing 
b3, c3, d3 , in total time 3X earning revenue 2, so OPT

ON
≥ 2∕(1 + �).

We now show that no non-preemptive deterministic online algorithm can be 
competitive with the revenue earned by opt in the last two time segments.

Lemma 1  No non-preemptive deterministic online algorithm can be guaranteed to 
earn any fraction of the revenue earned by opt in the last 2T/f time units. This is the 
case whether revenues are uniform or nonuniform.

Proof  Note that it is sufficient to construct an instance with uniform revenue that 
proves the claim. Let dist(u1, u2) denote the distance between two locations u1, u2 . 
Consider the following instance for f ≥ 3 for some non-preemptive deterministic 
algorithm alg.
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Let k be a positive integer. Let the graph consist of nodes s1, s2, d , and ai,j 
( i = 1, 2 and j = 0, 1,… , k ). These nodes are all distance T/f from each other except 
dist(ai,j, ai,j� ) = |j − j�|T∕(2kf ). Let any of these nodes be the origin.

There are no requests released before time T − 2T∕f . At time T − 2T∕f  , alg is 
either at some node, call it b, or heading toward b.

Pick one of s1, s2 that is not b. Without loss of generality, let s1 ≠ b . Release the 
request (s1, d, T − 2T∕f , 1) . There are three cases. 

1.	 Case: alg is heading toward b at time T − 2T∕f  . Then it must arrive at b at a time 
greater than T − 2T∕f  . Then there is insufficient time to travel to s1 and serve the 
request since doing so would take a total of 2T/f additional time. (It takes time 
at least T/f to travel to s1 because s1 is T/f distance from all other nodes.) No fur-
ther requests are released in this case. So alg earns zero while an opt path goes 
from the origin to s1 and waits there to serve the request during the time interval 
[T − 2T∕f , T − T∕f ] , earning 1.

2.	 Case: alg is at node b at time T − 2T∕f  , and does not immediately make an empty 
drive toward s1 . Then alg can not serve this request by the same reasoning as 
in Case 1 in that it takes at least time T/f to move to s1 along any path. No other 
requests are released in this case. As in Case 1, alg earns zero while an opt path 
earns 1 during the time interval [T − 2T∕f , T − T∕f ].

3.	 Case: alg is at node b at time T − 2T∕f  and immediately makes an empty drive 
toward s1 . Choose an i ∈ {1, 2} such that s1 ∉ {ai,j ∶ j = 0,… , k} . W.l.o.g. suppose 
i = 1 is chosen. Then the adversary releases the requests (a1,j−1, a1,j, T − 1.5T∕f , 1) 
for j = 1,… , k . Then alg arrives at s1 at time T − T∕f  . Since moving from s1 to 
any a1,j requires T/f, then there is insufficient time for alg to serve any of these 
new requests that start at a1,j−1 . Thus alg can earn at most 1 whereas an opt path 
goes from the origin to a1,0 at T − 3T∕f  and waits there to serve along the path 
a1,0,… , a1,k during time interval [T − 1.5T∕f , T − T∕f ] , earning revenue k.

In all three cases, alg cannot earn any fraction of the revenue that an opt path earns 
in the second to last time segment.

3 � Nonuniform Revenues and Nonuniform Metric

We now consider ROLDARP with nonuniform revenues and nonuniform edge 
weights. In  [1], we showed that if edge weights may be arbitrarily large, then no 
deterministic algorithm can be competitive. We therefore considered graphs where 
edge weights are bounded by a fixed fraction of the time limit, i.e., edge weights 
are at most T/f for some 1 < f < T  , which is a natural subclass of inputs since in 
real-world dial-a-ride systems, drivers would be unlikely to spend a large fraction 
of their day moving to or serving a single request. We presented an algorithm, seg-
mented best path (sbp), that starts by splitting the total time T into f segments each 
of length T/f (please see Algorithm 1). At the start of a time segment, the server 
determines the max-revenue-request-set, i.e., the maximum revenue set of unserved 
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requests that can be served within one time segment, and moves to the source of 
the first request in this set. During the next time segment, it serves the requests in 
this set. It continues this way, alternating between moving to the source of the first 
request in the max-revenue-request-set during one time segment, and serving this 
request-set in the next time segment. To find the max-revenue-request-set, the algo-
rithm maintains a directed auxiliary graph, G′ , to keep track of unserved requests (an 
edge between two vertices u,v represents a request with source u and destination v). 
It finds all paths of length at most T/f between every pair of nodes in G′ and returns 
the path that yields the maximum total revenue (please refer to [1] for full details). 
Finding all paths of length at most T/f in G′ requires enumeration of all paths in G′ 
and the number of possible paths is exponential in the size of G′ , which is deter-
mined directly by the number of unserved requests in the current time segment. 
However, in many real world settings, the size of G′ will be small relative to the size 
of G and in settings where T/f is small, the run time is further minimized. Therefore  
it should be feasible to execute the algorithm efficiently in many real-world settings.

We reconsider sbp since it has the current best upper bound for ROLDARP. Spe-
cifically, in [1] we proved that sbp is 6-competitive barring an additive factor equal 
to the revenue earned by opt during the last two time segments. More formally, let 
rev(SBP(tj)) and rev(OPT(tj)) denote the revenue earned by sbp  and opt  respectively 
during the j-th time segment. Then if rev(OPT(tf )) + rev(OPT(tf−1)) ≤ c , for some 
constant c, then 

∑f

j=1
rev(OPT(tj)) ≤ 6

∑f

j=1
rev(SBP(tj)) + c . In [1], we also showed 

that as T grows, the competitive ratio of sbp  is at best 4 (again with the additive 
term equal to rev(OPT(tf )) + rev(OPT(tf−1))) , resulting in a gap between the upper and 
lower bounds.

In this section we improve the lower and upper bounds for the competitive 
ratio of the segmented best path algorithm [1, 2]. In particular, we eliminate the 
gap between the lower and upper bounds of 4 and 6, respectively, from [1], by 
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providing an instance where the lower bound is 5 and a proof for an upper bound 
of 5. We study sbp  because it has the best known competitive ratio for ROL-
DARP. Note that throughout this section we assume the revenue earned by opt   
in the last two time segments is bounded by some constant since, as we showed 
in Lemma 1, no non-preemptive deterministic online algorithm can be guaran-
teed to earn any constant fraction of this revenue.

3.1 �  Lower Bound on SBP

Theorem 2  If the revenue earned by opt  in the last two time segments is bounded  
by some constant, and sbp is �-competitive, then � ≥ 5.

Proof  Consider the instance depicted in Figure  1. Fix f > 2 to be an even inte-
ger and fix h > 1 to be an integer. Set T = 2fh , so that the time segment length 
is T∕f = 2h > 1 . The distances in our instance will be either 1, h, or 1 + h . Let 
0 < 𝜖 < 1 be vanishingly small and let B > 0.

Let o be the origin, with other points in the graph being ui for i = 1, 2,… , f  and vi 
for i = 1, 2,… , m , where m will be determined below.

The idea is that sbp  will take the path o, u1,… , uf  in time T serving a single  
request of revenue B + � every other time segment as prescribed by the algorithm.  
Meanwhile, discounting the revenue earned in the last two time segments, opt will 
take the path o, v1,… , vm, u2, ..., uf−2 in time T − 2T∕f = T − 4h . The dis- 
tances are shown below each edge in the figure: d(o, u1) = 1 , d(ui, ui+1) = 1 for i 
odd, d(ui, ui+1) = h for i even, d(o, v1) = 1 , d(vi, vi+1) = h + 1 , for i = 1,… , m − 1 , 
d(vm, u2) = h + 1 , and all other distances (not shown) are h.

Fig. 1   An instance where opt (whose path is shown in dashed green below) earns 5 − 4∕(f − 2) times the 
revenue of sbp (shown in solid blue above). In this instance, T = 2hf  , and edges that represent requests 
are shown as solid edges. For each such edge the release time followed by revenue of the corresponding 
request is shown in parenthesis above the edge. The weight of an edge is shown below the edge. Dotted 
edges represent empty moves for sbp 
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The requests are depicted as directed edges in the figure. They are: 
(u1, u2, 0, �), (u2i+1, u2i+2, 4ih, B + �) for i = 1,… , f∕2 − 1 , (u2i, u2i+1, 4ih + 1, B) for 
i = 1,… , f∕2 − 1 , (vi, vi+1, 1, B) for i = 1, ..., m − 1 , and (vm, u2, 1, B).

Note that sbp will take the path o, u1, ..., uf :

(1)	 At time t = 0 , sbp will choose drive (o, u1) followed by request (u1, u2) because 
that is all that is available.

(2)	 For k = 1,… , f∕2 − 1 , at time t = 4hk (the start time of a pair of time seg-
ments of length 2h = T∕f  each), sbp is at vertex u2k . The available requests 
(that have not yet been served) are: (u2i, u2i+1, 4ih + 1, B) for i = 1, ..., k − 1 , 
(u2k+1, u2k+2, 4kh, B + �) , along with (vi, vi+1, 1, B) for i = 1, ..., m − 1 , and 
(vm, u2, 1, B) . Note that none of the requests of revenue B along the top path 
arrive in time for sbp to serve more than a single request at a time. Further, 
since we are looking for a request set that has path length at most 2h, we cannot 
put together a path of length at most 2h that has two or more of these requests 
(since an edge from either u2k+1 or u2k+2 to any other vertex that is the source 
or destination of a request has weight h by design). Thus a maximum revenue 
set chosen by sbp using a path of length at most 2h has only one request. And a 
maximum revenue request would clearly be the request (u2k+1, u2k+2, 4kh, B + �) . 
Thus sbp would drive from u2k to u2k+1 at time t = 4kh and serve the request 
(u2k+1, u2k+2) at time t = 4kh + 2h . And at time t = 4(k + 1)h , SBP would be at 
vertex u2k+2.

Thus sbp earns revenue � + (f∕2 − 1)(B + �) = B(f − 2)∕2 + f ⋅ �∕2.
We now consider opt, and let OPT

′ denote the opt  path without the last 
two time segments. That is, OPT

′ earns only the revenue earned up until time 
T − 2T∕f = 2fh − 4h = (2f − 4)h . So OPT

′ is the path o, v1,… , vm, u2,… , uf−2 . Note 
we stop at node uf−2 because the requests from uf−2 to uf−1 and uf−1 to uf  are not yet 
released before time (2f − 4)h.

OPT
′ takes 1 + m ⋅ (h + 1) time to get to u2 and takes time (1 + h) ⋅ (f∕2 − 2) to go 

from u2 to uf−2 . The total is 1 + m(h + 1) + (1 + h) ⋅ (f∕2 − 2).
The largest m for which OPT

′ is completed before time (2f − 4)h is

Observe that for this value of m, we have 1 + m(h + 1) + (f∕2 − 2) ⋅ (1 + h) ≤ (2f − 4)h  
as needed.

Clearly, OPT
′ can serve all the requests on the path v1, ..., vm, u2 because these 

requests were all released at time t = 1 . Now, for each k = 1, ..., f∕2 − 2 , OPT
′  

arrives at vertex u2k at time �k = 1 + m(h + 1) + (1 + h)(k − 1) . By Lemma 5 in 
Section  2 of the Appendix, �k ≥ 4kh + 1 for each k = 1,… , f∕2 − 2 . Therefore 
the requests (u2k, u2k+1, 4kh + 1, B) and (u2k+1, u2k+2, 4kh, B + �) are released on or 
before �k , allowing OPT

′ to serve these two requests when it reaches u2k at time �k . 
Therefore all the drives starting at v1 are revenue generating requests for OPT

′.

m = ⌊(3hf − 4h − f + 2)∕(2(h + 1))⌋.
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Now, OPT
′ has revenue mB from v1 up to u2 and revenue (2B + �)(f − 4)∕2 from u2 to 

uf−2 . Let rev(alg) denote the total revenue earned by a schedule, alg. Then we can write 
rev(OPT

�) = mB + (2B + �)(f − 4)∕2 = mB + Bf − 4B + �(f − 4)∕2 = ⌊(3hf − 4h−

f + 2)∕(2(h + 1))⌋B + fB − 4B + �(f − 4)∕2.
The ratio is thus

Taking the limit as � approaches 0,

Next we will take the limit as T approaches infinity, which is the same as taking 
h to infinity, because f is fixed. First, note the inside of the floor can be rewritten as

Note 3f∕2 − 2 is an integer since f is even, so when h + 1 > 2f − 3 , we have 
0 < (2f − 3)∕(h + 1) < 1 . Thus ⌊3f∕2 − 2 − (2f − 3)∕(h + 1)⌋ = 3f∕2 − 2 − 1 =

3f∕2 − 3 when h > 2f − 4 . Then limT→∞⌊3f∕2 − 2 − (2f − 3)∕(h + 1)⌋ = 3f∕2 − 3. 
Therefore

Summarizing, for a fixed f > 2 , this instance gives a lower bound of 5 − 4∕(f − 2) 
as � approaches 0 and T approaches infinity.

3.2 �  Upper Bound on SBP

We now show that sbp  is 5-competitive by creating a modified, hypothetical sbp   
schedule that has additional copies of requests. First, we note that sbp loses a factor of 
2 due to the fact that it serves requests during only every other time segment.

Then, we lose another factor of two to cover requests in opt that overlap between 
time segments. Finally, by adding at most one more copy of the requests served 
by sbp to make up for requests that sbp “incorrectly” serves prior to when they are 
served by opt, we end up with 5 copies of sbp  being sufficient for bounding the  
total revenue of opt.

Note that while this proof uses some of the techniques of the proof of the 6-competitive 
upper bound in [1], it reduces the competitive ratio from 6 to 5 by cleverly extracting the set 
of requests that sbp serves prior to opt before making the additional copies.

rev(OPT
�)

rev(SBP)
=

⌊(3hf − 4h − f + 2)∕(2(h + 1))⌋B + fB − 4B + �(f − 4)∕2

B ⋅ (f − 2)∕2 + f ⋅ �∕2
.

lim
�→0

rev(OPT
�)

rev(SBP)
=
⌊(3hf − 4h − f + 2)∕(2(h + 1))⌋B + fB − 4B

B ⋅ (f − 2)∕2

=
⌊(3hf − 4h − f + 2)∕(2(h + 1))⌋ + f − 4

(f − 2)∕2
.

(3hf − 4h − f + 2)∕(2(h + 1)) = 3f∕2 − 2 − (2f − 3)∕(h + 1).

lim
T→∞

lim
�→0

rev(OPT
�)

rev(SBP)
=

3f∕2 − 3 + f − 4

(f − 2)∕2
=

5f∕2 − 7

(f − 2)∕2
=

(5f − 14)

(f − 2)
= 5 − 4∕(f − 2).
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Let rev(OPT) and rev(OPT) denote the total revenue earned by opt  and sbp, 
respectively, over all time segments tj from j = 1… f .

Theorem 3  If the revenue earned by opt  in the last two time segments is bounded by  
some constant c (a necessary assumption due to Lemma 1), then sbp is 5-competitive, i.e.,  
if rev(OPT(tf )) + rev(OPT(tf−1)) ≤ c , then 

∑f

j=1
rev(OPT(tj)) ≤ 5

∑f

j=1
rev(SBP(tj)) + c.

Another interpretation of this result is that under a resource augmentation model 
where sbp has two more time segments available than opt, sbp is 5-competitive.

Proof  We analyze the revenue earned by sbp by considering the time segments in 
pairs (recall that the length of a time segment is T/f for some 1 < f < T  ). We refer to 
each pair of consecutive time segments as a time window, so if there are f time seg-
ments, there are ⌈f∕2⌉ time windows. Note that the last time window may have only 
one time segment.

For notational convenience we consider a modified version of the sbp schedule, 
that we refer to as SBP

′ , which serves exactly the same set of requests as sbp, but 
does so one time window earlier. Specifically, if sbp serves a set of requests during 
time window i ≥ 2 , SBP

′ serves this set during time window i − 1 (so SBP
′ ignores the 

set served by sbp in window 1). We note that the schedule of requests served by SBP
′ 

may be infeasible, and that it will earn at most the amount of revenue earned by 
sbp.

Let Bi denote the set of requests served by opt  in window i that SBP
′ already 

served before in some window j < i . And let B be the set of all requests that have 
already been served by SBP

′ in a previous window by the time they are served in the 
opt schedule. Formally, B =

⋃⌈f∕2⌉
i=2

Bi . Consider a schedule OPT that contains all of 
the requests in the opt schedule minus the requests in B. So OPT earns total revenue 
rev(OPT) − rev(B) , where rev(B) denotes the total revenue of the set B.

Let OPT(tj) denote the set of requests served by OPT in time segment tj . Let OPTi 
denote the set of requests served by OPT in the time segment of window i with greater 
revenue, i.e., OPTi = arg max{rev(OPT(t2i−1)), rev(OPT(t2i))} . Note this set may include 
a request that was started in the prior time segment, as long as it was completed in 
the time segment of OPTi . Let rev(OPTi) denote the revenue earned in OPTi.

Let SBP
′
i
 denote the set of requests served by SBP

′ in window i and let rev(SBP
�
i
) 

denote the revenue earned by SBP
′
i
 . Let H denote the chronologically ordered set of 

time windows w where rev(OPTw) > rev(OPT
�
w
) , and let hj denote the jth time win-

dow in H. We refer to each window of H as a window with a “hole,” in reference 
to the fact that SBP

′ does not earn as much revenue as OPT in these windows. In each 
window hj there is some amount of revenue that OPT earns that SBP

′ does not. In par-
ticular, there must be a set of requests that OPT serves in window hj that SBP

′ does 
not serve in hj . Note that this set must be available for SBP

′ in hj since OPT does not 
include the set B.

Let OPThj
= Aj ∪ C∗

j
 , where Aj is the subset of requests served by both OPT and SBP

′ 
in hj and C∗

j
 is the subset of OPT requests available for SBP

′ to serve in hj but SBP
′ 
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chooses not to serve. Let us refer to the set of requests served by SBP
′ in hj as 

SBP
�
hj
= Aj ∪ Cj for some set of requests Cj . Note that if OPThj

= Aj ∪ C∗
j
 can be exe-

cuted within a single time segment, then rev(Cj) ≥ rev(C∗
j
) by the greediness of SBP

′ . 
However, since hj is a hole we know that the set OPThj

 cannot be served within one 
time segment.

Our plan is to build an infeasible schedule SBP that will be similar to SBP
′ but con-

tain additional “copies” of some requests such that no windows of SBP contain holes. 
We first initialize SBP to have the same schedule of requests as SBP

′ . We then add 
additional requests to hj for each j = 1… |H| , based on OPThj

.
Consider one such window with a hole hj , and let k be the index of the time seg-

ment corresponding to OPThj
 . We know OPT must have begun serving a request of 

OPThj
 in time segment tk−1 and completed this request in time segment tk . Let us use r∗ 

to denote this request that “straddles” the two time segments.
After the initialization of SBP = SBP

� , recall that the set of requests served by SBP in 
hj is SBPhj

= Aj ∪ Cj for some set of requests Cj . We add to SBP a copy of a set of 
requests. There are two sub-cases depending on whether r∗ ∈ C∗

j
 or not.

Case r∗ ∈ C∗
j
 . In this case, by the greediness of sbp, and the fact that both r∗ 

alone and C∗
j
⧵ {r∗} can separately be completed within a single time segment, we 

have: rev(Cj) ≥ max{rev(r∗), rev(C∗
j
⧵ {r∗})} ≥

1

2
rev(C∗

j
).

We then add a copy of the set Cj to the SBP schedule, so there are two copies of Cj 
in hj . Note that for SBP , hj will no longer be a hole since:

rev(OPThj
) = rev(Aj) + rev(C∗

j
) ≤ rev(Aj) + 2 ⋅ rev(Cj) = rev(SBPhj

).

Case r∗ ∉ C∗
j
 . In this case C∗

j
 can be served within one time segment but SBP

′ 
chooses to serve Aj ∪ Cj instead. So we have rev(Aj) + rev(Cj) ≥ rev(C∗

j
) , therefore 

we know either rev(Aj) ≥
1

2
rev(C∗

j
) or rev(Cj) ≥

1

2
rev(C∗

j
) . In the latter case, we can 

do as we did in the first case above and add a copy of the set Cj to the SBP schedule in 
window hj , to get rev(OPThj

) ≤ rev(SBPhj
) , as above. In the former case, we instead 

add a copy of Aj to the SBP schedule in window hj . Then again, for SBP , hj will no 
longer be a hole, since this time:

rev(OPThj
) = rev(Aj) + rev(C∗

j
) ≤ 2 ⋅ rev(Aj) + rev(Cj) = rev(SBPhj

).

Note that for all windows w ∉ H that are not holes, we already have 
rev(SBPw) ≥ rev(OPTw) . So we have

where the second inequality is because SBP contains no more than two instances of 
every request in SBP

′.
Combining (1) with the fact that SBP

′ earns at most what sbp does yields

(1)
⌈f∕2⌉−1�

i=1

rev(OPTi) ≤

⌈f∕2⌉−1�

i=1

rev(SBPi) ≤ 2

⌈f∕2⌉−1�

i=1

rev(SBP
�
i
)
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Since sbp serves in only one of two time segments per window, we have∑⌈f∕2⌉
i=1

rev(SBPi) =
∑f

j=1
rev(SBP(tj)).  

Hence, by the definition of OPT , and by (2) we can say

Now we must add in any request in B, such that opt serves the request in a time win-
dow after SBP

′ serves that request. By definition of B (as the set of all requests that 
have been served by SBP

′ in a previous window) B may contain at most the same set 
of requests served by SBP

′ . Therefore rev(B) ≤ rev(SBP
�) , so rev(B) ≤ rev(SBP).

By the definition of opt, OPT = OPT + B , so

And by combining (3)-(5) with the fact that rev(B) ≤ rev(SBP) , we have:

4 �  Uniform Revenues

We now consider the setting where revenues are uniform among all requests, so the 
goal is to maximize the total number of requests served. This variant is useful for 
settings where all requests have equal priorities, for example for not-for-profit ser-
vices that provide transportation to elderly and disabled passengers.

The proof strategy is to carefully consider the requests served by sbp in each 
window and track how they differ from that of opt. The final result is achieved 

(2)
⌈f∕2⌉�

i=1

rev(OPTi) ≤ 2

⌈f∕2⌉�

i=1

rev(SBPi) + rev(OPT(tf−1)) + rev(OPT(tf )).

(3)
f�

j=1

rev(OPT(tj)) ≤2

⌈f∕2⌉�

i=1

rev(OPTi)

(4)≤4

f∑

j=1

rev(SBP(tj)) + rev(OPT(tf−1)) + rev(OPT(tf )).

(5)
f∑

j=1

rev(OPT(tj)) = rev(B) +

f∑

j=1

rev(OPT(tj)).

f∑

j=1

rev(OPT(tj)) ≤

f∑

j=1

rev(SBP(tj)) + 4

f∑

j=1

rev(SBP(tj))

+ rev(OPT(tf−1)) + rev(OPT(tf ))

≤5

f∑

j=1

rev(SBP(tj)) + rev(OPT(tf−1))

+ rev(OPT(tf )).
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through a clever accounting of the differences between the two schedules, and 
bounding the revenue of the requests that are “missing” from sbp.

We now show that opt earns at most 4 times the revenue of sbp in this setting 
if we assume the revenue earned by opt in the last two time segments is bounded 
by a constant, and allow sbp  an additive bonus of f. Note that even when rev-
enues are uniform, no non-preemptive deterministic online algorithm can earn 
the revenue earned by opt  in the last two time segments (see Lemma  1). We 
note that the lower bound instance of Theorem 2 can be modified to become a 
uniform-revenue instance that has ratio 5 − 14∕f . We further note that the lower 
bound instance provided in [1] immediately establishes a lower bound instance 
for sbp  that has a ratio of 4, so the upper bound we now present is nearly tight. 
We begin with several definitions and lemmas.

As in the proof of Theorem 3, we consider a modified version of the sbp sched-
ule, that we refer to as SBP

′ , which serves exactly the same set of requests as 
sbp, but does so one time window earlier. For all windows i = 1, 2, ..., m , where 
m = ⌈f∕2⌉ − 1 , we let S′

i
 denote the set of requests served by SBP

′ in window i 
and S∗

i
 denote the set of requests served by opt during the time segment of win-

dow i with greater revenue, i.e., S∗
i
= arg max{rev(OPT(t2i−1), rev(OPT(t2i))} where 

rev(OPT(tj)) denotes the revenue earned by opt  in time segment tj . We define a 
new set J∗

i
 as the set of requests served by opt during the time segment of win-

dow i with less revenue, i.e., J∗
i
= arg min{rev(OPT(t2i−1), rev(OPT(t2i))}.

Let S∗
i
= Ai ∪ X∗

i
∪ Y∗

i
 , and S�

i
= Ai ∪ Xi ∪ Yi , where:

(1) Ai is the set of requests that appear in both S∗
i
 and S′

i
 ; (2)

X∗
i
 is the set of requests that appear in S′

w
 for some w = 1, 2, ..., i − 1 . Note there 

is only one possible w for each individual request r ∈ X∗
i
 , because each request 

can be served only once; (3)
Y∗

i
 is the set of requests such that no request from Y∗

i
 appears in S′

w
 for any 

w = 1, 2, ..., i − 1, i ; (4) Xi is the set of requests that appear in S∗
w
 for some 

w = 1, 2, ..., i − 1 . Note there is only one possible w for each individual request 
r ∈ Xi , because each request can be served only once; (5) Yi is the set of requests 
such that no request from Yi appears in S∗

w
 for any w = 1, 2, ..., i − 1, i.

Note that elements in Yi can appear in a previous J∗
w
 for any w = 1, 2, ..., i − 1, i 

or in a future S∗
v
 or J∗

v
 for any v = i + 1, i + 2, ..., m , or may not appear in 

any other sets. Also note that since each request can be served at most 
once, we have: A1 ∩ X∗

1
∩ Y∗

1
∩ A2 ∩ X∗

2
∩ Y∗

2
∩ ... ∩ Am ∩ X∗

m
∩ Y∗

m
= � and 

A1 ∩ X1 ∩ Y1 ∩ A2 ∩ X2 ∩ Y2 ∩ ... ∩ Am ∩ Xm ∩ Ym = �.
Given the above definitions, we have the following lemmas.

Lemma 2  All requests r ∈ X∗
i
 must satisfy that r ∈ Yw for some w = 1, 2, ..., i − 1 , 

and there is only one possible value of w.

Proof  By definition, each request of X∗
i
 must appear in S′

w
 for some w = 1, 2, ..., i − 1 , 

and there is only one possible value of w. Let r be a request of X∗
i
 . We know that r 



1 3

Operations Research Forum _#####################_	 Page 17 of 38  _####_

must appear in either Aw , or Xw , or Yw . However, r cannot appear in Aw , since other-
wise r would have been served in S∗

w
 , where w < i , which is a contradiction since r 

is served in S∗
i
 . Similarly, r cannot appear in Xw , since otherwise r would have been 

served in S∗
v
 for some v = 1, 2, ..., w − 1 , where v < w < i , which is a contradiction 

since we know r is served in S∗
i
 . By elimination, r must be a request of Yw.

Lemma 3  X∗
1
∪ X∗

2
∪ ... ∪ X∗

i
⊆ Y1 ∪ Y2 ∪ ... ∪ Yi−1 for all i = 2, 3, ..., m.

Proof  We prove this by induction. For the base case, by Lemma 2, X∗
1
 must be a 

subset of Y0 , where Y0 is the empty set; X∗
2
 must be a subset of Y1 . Therefore, 

X∗
1
∪ X∗

2
= � ∪ X∗

2
⊆ Y1 . For the inductive case, assume

Consider X∗
k+1

 and Yk . By Lemma 2, elements of X∗
k+1

 can come from only two 
sources: Yk and Y1 ∪ Y2 ∪ ...Yk−1 . Therefore,

Combining (6) and (7), we have

Lemma 4  For all i = 1, 2, ..., m we have 
∑i

j=1
�X∗

j
� ≤ ∑i

j=1
�Yi�.

Proof  The size of a set A must be at least the size of any subset of A so from Lemma 
3, we have for all i = 1, 2, ..., m,

Recall we observed above that X∗
1
∩ X∗

2
∩ ... ∩ X∗

i
= � and

Y1 ∩ Y2 ∩ ... ∩ Yi−1 = � . Hence, we can rewrite the inequality as

By adding |Yi| on the right-hand-side, we have proven the claim.

We are now ready to prove the main theorem of this section.

Theorem 4  If the revenue earned by opt in the last two time segments is bounded by 
some constant c, i.e. if rev(OPT(tf )) + rev(OPT(tf−1)) ≤ c (a necessary assumption due 
to Lemma 1), then sbp earns at least 1/4 the revenue of opt, minus an additive term 
linear in f, where T/f is the length of one time segment. I.e., 

∑f

j=1
 rev( opt (tj)) ≤ 

4
∑f

j=1
rev( sbp (tj)) + 2⌈f∕2⌉ + c . So if f is also bounded by some constant, then 

sbp is 4-competitive.

Proof  Note that since revenues are uniform, the revenue of a request-set U is 
equal to the size of the set U, i.e., rev(U) = |U| . Consider each window i where 

(6)X∗
1
∪ X∗

2
∪ ... ∪ X∗

k
⊆ Y1 ∪ Y2 ∪ ... ∪ Yk−1.

(7)X∗
k+1

⊆ Y1 ∪ Y2 ∪ ... ∪ Yk−1 ∪ Yk.

X∗
1
∪ X∗

2
∪ ... ∪ X∗

k
∪ X∗

k+1
⊆ Y1 ∪ Y2 ∪ ... ∪ Yk−1 ∪ Yk.

|X∗
1
∪ X∗

2
∪ ...X∗

i
| ≤ |Y1 ∪ Y2 ∪ ...Yi−1|.

|X∗
1
| + |X∗

2
| + ... + |X∗

i
| ≤ |Y1| + |Y2| + ... + |Yi−1|.
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rev(S∗
i
) > rev(S�

i
) . Note that the set S∗

i
 may not fit within a single time segment. We 

consider two cases based on S∗
i
.

1.	 The set S∗
i
 can be served within one time segment. Note that within 

S∗
i
= Ai ∪ X∗

i
∪ Y∗

i
 , X∗

i
 is not available for SBP

′ to serve because SBP
′ has served the 

requests in X∗
i
 prior to window i. Among requests that are available to SBP

′ , SBP
′ 

greedily chooses to serve the maximum revenue set that can be served within one 
time segment. Therefore, we have rev(Xi) + rev(Yi) ≥ rev(Y∗

i
). Since revenues are 

uniform, we also have |Xi| + |Yi| ≥ |Y∗
i
|. If this is not the case, then SBP

′ would 
have chosen to serve Y∗

i
 instead of Xi ∪ Yi since it is feasible for SBP

′ to do so 
because the entire S∗

i
 can be served within one time segment.

2.	 The set S∗
i
 cannot be served within one time segment. This means there must 

be one request in S∗
i
 that opt started serving in the previous time segment. We 

refer to this straddling request as r∗ . There are three sub-cases based on where 
r∗ appears.

(a)	 If r∗ ∈ Y∗
i
 , then due to the greediness of SBP

′ , we know that 

 since otherwise SBP
′ would have chosen to serve r∗ . We also know 

 since otherwise SBP
′ would have chosen to serve Y∗

i
�{r∗} . From (8), we have 

|Xi| + |Yi| ≥ 1 and from (9), we have |Xi| + |Yi| ≥ |Y∗
i
| − 1.

(b)	 If r∗ ∈ X∗
i
 , then r∗ is not available to SBP

′ and only Ai , Xi , Yi , and Y∗
i
 are available 

to SBP
′ . Therefore we know that rev(Xi) + rev(Yi) ≥ rev(Y∗

i
) since otherwise, by 

its greediness, SBP
′ would have chosen to serve Ai and Y∗

i
 instead of Ai , Xi and Yi , 

because Ai and Y∗
i
 can be served within one time segment. Therefore, we have 

|Xi| + |Yi| ≥ |Y∗
i
|.

(c)	 r∗ ∈ Ai . Then r∗ is served by both opt and SBP
′ . We know that Ai ∪ Y∗

i
�{r∗} 

can be served within one time segment since r∗ is the only request that causes 
S∗

i
 to straddle between two time segments. Again by the greediness of SBP

′ , we 
have rev(Ai) + rev(Xi) + rev(Yi) ≥ rev(Ai) + rev(Y∗

i
) − rev(r∗) which means 

rev(Xi) + rev(Yi) ≥ rev(Y∗
i
) − rev(r∗) and |Xi| + |Yi| ≥ |Y∗

i
| − 1.

Therefore, for all cases, for window i, we have |Xi| + |Yi| ≥ |Y∗
i
| − 1 , which means 

|Y∗
i
| − |Xi| ≤ 1 + |Yi| , and with m = ⌈f∕2⌉ − 1,

Now we will build an infeasible schedule SBP that will be similar to SBP
′ but con-

tain additional “copies” of some requests such that no windows of SBP contain holes, 
i.e., such that rev(SBP) ≥

∑m

i=1
rev(S∗

i
).  

(8)rev(Xi) + rev(Yi) ≥ rev(r∗)

(9)rev(Xi) + rev(Yi) ≥ rev(Y∗
i
�{r∗})

(10)
m∑

i=1

(|Y∗
i
| − |Xi|) ≤ m +

m∑

i=1

|Yi|.
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We define a modified opt schedule which we refer to as OPT
′ such that 

OPT
� = ∪m

i=1
S∗

i
 and observe that rev(OPT

�) =
∑m

i=1
�Ai� +

∑m

i=1
�X∗

i
� +∑m

i=1
�Y∗

i
� , while 

rev(SBP
�) =

∑m

i=1
�Ai� +

∑m

i=1
�Xi� +

∑m

i=1
�Yi�.  

By Lemma 4 and Equation (10), we can say rev(OPT
�) − rev(SBP

�) =
∑m

i=1
�Y∗

i
�

−
∑m

i=1
�X

i
� +∑m

i=1
�X∗

i
� −∑m

i=1
�Y

i
� ≤ ∑m

i=1
�Y∗

i
� −∑m

i=1
�X

i
� ≤ m +

∑m

i=1
�Y

i
�.  

This tells us that to form an SBP whose revenue is at least that of OPT
′ , we must 

“compensate” SBP
′ by adding to it at most copies of all requests in the set Yi for all 

i = 1, 2, ..., m , plus m “dummy requests.” In other words,

We know the total revenue of all Yi can not exceed the total revenue of SBP
′ , hence 

we have

Combining (11) and (12), we get rev(OPT
�) ≤ 2rev(SBP

�) + m , which means

Recall that S∗
i
 is the set of requests served by opt during the time segment of 

window i with greater revenue. In other words, 
∑2m

j=1
rev(S∗(tj)) ≤ 2

∑m

i=1
rev(S∗

i
), 

which, combined with (13), gives us

Since we may assume that the total revenue of requests served in the last two time 
segments by opt is bounded by c, from (14) we get

We also know that the total revenue of requests served by SBP
′ during the first m 

windows is less than or equal to the total revenue of sbp. Therefore, from (15), we 
have 

∑f

j=1
rev(S∗(tj)) ≤ 4

∑f

j=1
rev(S(tj)) + 2m + c.

(11)rev(SBP) = rev(SBP
�) + m +

m∑

i=1

|Yi| ≥ rev(OPT
�).

(12)rev(SBP) = rev(SBP
�) + m +

m∑

i=1

|Yi| ≤ 2rev(SBP
�) + m.

(13)
m∑

i=1

rev(S∗
i
) ≤ 2

m∑

i=1

rev(S�
i
) + m.

(14)
2m∑

j=1

rev(S∗(tj)) ≤ 4

m∑

i=1

rev(S�
i
) + 2m.

(15)
f∑

j=1

rev(S∗(tj)) ≤

2m∑

j=1

rev(S∗(tj)) + rev(S∗(tf−1)) + rev(S∗(tf ))

(16)≤4

m∑

i=1

rev(S�
i
) + 2m + c.
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5 �  Bipartite Graphs

In this section, we consider ROLDARP for complete bipartite graphs 
G = (V = V1 ∪ V2, E) , where only nodes in V1 may be source nodes and only nodes 
in V2 may be destination nodes. One node is designated as the origin and there is an 
edge from this node to every node in V1 (so the origin is a node in V2).

We refer to this problem as ROLDARP-B and the offline version as RDARP-
B. We refer to the offline version of ROLDARP with integer edge weights as 
RDARP-ℤ , and show that RDARP-ℤ reduces to RDARP-B, and the uniform- 
revenue version of RDARP-ℤ reduces to uniform-revenue RDARP-B. Since RDARP- 
ℤ and uniform revenue RDARP-ℤ are NP-hard [16], then RDARP-B and uniform 
revenue RDARP-B are also NP-hard.

Theorem 5  RDARP-ℤ is polynomial-time reducible to RDARP-B, and the uniform-
revenue version of RDARP-ℤ is polynomial-time reducible to uniform-revenue 
RDARP-B.

Proof  Consider an instance of RDARP-ℤ with time limit T (the proof below holds 
for both the uniform and nonuniform revenue variants). Because edge weights are 
integers, we can assume for simplicity that T is an integer. For every node u in 
the RDARP-ℤ graph, make two nodes u1 and u2 for the bipartite graph such that 
u1 ∈ V1 (the source side) and u2 ∈ V2 (the destination side), then set the weights 
w(u1, u2) = w(u2, u1) = � =

1

2T
.

For every edge (u, v) in the RDARP-ℤ graph with weight w(u, v), make two edges 
in the bipartite graph: one from u1 ∈ V1 to v2 ∈ V2 and a second from u2 ∈ V2 to 
v1 ∈ V1 , both with weight w(u, v). Finally, for each request from source s to destina-
tion d in the RDARP-ℤ instance, create an equivalent-revenue request in the RDARP-
B instance from s1 ∈ V1 to d2 ∈ V2 . Set the time limit in the RDARP-B instance to be 
T +

1

2
 . The additional 1

2
 is to accommodate time needed to travel the �-weight edges.

We complete the proof by showing that a schedule � with revenue R exists in the 
RDARP-ℤ instance if and only if a schedule �′ with revenue R exists in the RDARP-
B instance.

(1) Let the path P = (a, b, c,… , z) be the path followed in the execution of the 
schedule � in the RDARP-ℤ instance. The equivalent path in the RDARP-B instance 
would be P� = (a2, a1, b2, b1, c2, c1,… , z2) . Clearly P′ has the same revenue as P. 
Notice that because P can have at most T edges, and since the number of edges in P′ 
of the form (u2, v1) is exactly the number of edges in the path P, then P′ takes time at 
most T + T� = T +

1

2
 . So P′ gives our desired schedule �′.

(2) Conversely, suppose schedule �′ uses a path P′ . Then P′ must alternate from 
one side of the bipartition to the other. Construct P from P′ by simply mapping each 
u1 or u2 of P′ to u. Clearly, P earns the same revenue as P′ . Any moves in P′ along �
-weight edges would result in consecutive repeated vertices in P and therefore rep-
resent the server staying put in P. Since P′ takes time at most T +

1

2
 , path P will also 
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take time at most T +
1

2
 . Since edge weights in the RDARP-ℤ instance are integers, 

P takes time at most ⌊T +
1

2
⌋ = T .

Corollary 1  RDARP-B is NP-hard. This is the case for both the uniform and nonuni-
form revenue variants.

Proof  The proof is a direct result of Theorem 5 and the NP-hardness of uniform rev-
enue RDARP-ℤ [16].

Corollary 2  RDARP-ℤ is poly-time reducible to RDARP-B-ℤ (the bipartite version 
with integer weights). Thus RDARP-B-ℤ is NP-hard. This is the case for both the 
uniform and nonuniform revenue variants.

Proof  In the proof to Theorem 5, modify the RDARP-B instance to an RDARP-B-ℤ 
instance as follows. Scale all the edge weights along with the time limit by the factor 
2T. Then this modified instance has a schedule of revenue R if and only if the unmod-
ified instance has a schedule of revenue R. Note that the new weights are all integers. 
This is a polynomial time reduction because the size of the graph is the same and the 
new time limit 2T2 is a polynomial function of the previous time limit T.

5.1 �  Uniform Revenue Bipartite

Since the reduction of Theorem 5 relied on edge weights being arbitrarily small, we 
now impose a minimum edge weight of kT/f for some constant k such that 0 < k ≤ 1 . 
Note these graphs reflect real-world settings where pickup and drop-off locations  
are likely to be at least some minimum distance away from each other. We now  
show that if revenues are uniform, we can guarantee that sbp  earns a fraction of 
opt equal to the ratio between the minimum and maximum edge-length.

Theorem 6  For any instance of ROLDARP-B where the revenues are uniform for all 
requests, if edge weights are upper and lower bounded by T/f and kT/f, respectively, 
for some constant 0 < k ≤ 1 , then rev(OPT) ≤ ⌈1∕k⌉ ⋅ rev(SBP) + ⌈1∕k⌉.

Proof  We define a k-unit as a length of time of duration kT/f. As before, we refer to 
each pair of consecutive time segments as a time window. We say a k-unit belongs 
to time window i if it ends within time window i. Note that a k-unit may straddle two 
windows by starting at one window and ending in the next.

If 2/k is an integer, then there are strictly 2T∕f

kT∕f
= 2∕k k-units in one time window. 

Note that this is true even if the window contains a straddling k-unit, since this k-unit 
will force another one to straddle into the next time window.

If 2/k is not an integer, then there are ⌊ 2T∕f

kT∕f
⌋ = ⌊2∕k⌋ non-straddling k-units within 

one window. If the window contains a straddling k-unit, the number of k-units will 
be ⌊2∕k⌋ + 1 = ⌈2∕k⌉ . Among those ⌈2∕k⌉ k-units, at most ⌈⌈2∕k⌉∕2⌉ = ⌈1∕k⌉ of 
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them can be used in an opt schedule to serve requests since no algorithm can serve 
two or more requests consecutively without a move in between. Therefore, whether 
or not 2/k is an integer, the maximum number of requests that can be served in each 
window is ⌈1∕k⌉.

Let � = ⌈f∕2⌉ denote the total number of windows. There are two cases based on 
the performance of sbp: 

1.	 sbp serves at least 1 request per window. In this case, sbp  serves at least �  
requests, and opt serves at most � ⋅ ⌈1∕k⌉ . Therefore, rev(OPT)

rev(SBP)
≤

�⌈1∕k⌉
�

≤ ⌈1∕k⌉.
2.	 There exists at least one window where sbp serves no requests. We refer to such 

a window as an “empty window.” Consider the last empty window that occurred 
within the entire time limit, and denote this window as w. Let � denote the start 
time of window w. We analyze the requests served (1) before, (2) during, and (3) 
after w:

•	 Before window w: Since sbp serves nothing during window w, we know that 
all requests released before time � have been served by sbp. Let b denote this 
number of requests. So before � , opt could have served at most b requests.

•	 During window w: opt can serve at most ⌈1∕k⌉ requests and sbp  serves no 
requests.

•	 After window w: Suppose there are x windows after w (excluding window 
w). By definition, window w is the last window where sbp serves no requests, 
hence during the x windows afterward, sbp serves at least one request per 
window. On the other hand, opt serves at most ⌈1∕k⌉ requests per window.

	    We know that ⌈1∕k⌉ ≥ 1 . Therefore we have rev(OPT) ≤ b + ⌈1∕k⌉ + x ⋅ ⌈1∕k⌉ 
and rev(SBP) ≥ b + 0 + x. Hence 

5.2 �  Nonuniform Revenue Bipartite

In this section we show that even when revenues are nonuniform, we can guarantee 
that sbp earns a fraction of opt equal to the ratio between the minimum and maxi-
mum edge-length, minus the revenue earned by opt in the last window (i.e. the last 
two time segments). Note that no non-preemptive deterministic online algorithm can 
be competitive with any fraction of the revenue earned by opt in the last time win-
dow (i.e., Lemma 1 also holds for ROLDARP-B with nonuniform revenues).

Theorem  7  For any instance of ROLDARP-B where the revenues of requests are 
nonuniform, if edge weights are upper and lower bounded by T/f and kT/f, respec-
tively, for some constant 0 < k ≤ 1 , and if the revenue earned by opt in the last time 
window is bounded by some constant c (a necessary assumption due to Lemma 1), 
then rev(OPT) ≤ ⌈1∕k⌉ ⋅ rev(SBP) + c.  

rev(OPT) ≤ ⌈1∕k⌉ ⋅ rev(SBP) + ⌈1∕k⌉.
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Proof  Again, we refer to each pair of consecutive time segments as a time win-
dow. We consider a hypothetical schedule which we refer to as SBP

′ that proceeds as 
follows.

In the first time window, SBP
′ does nothing.

In the ith window ( 2 ≤ i ≤ ⌈f∕2⌉ ), SBP
′ serves exactly one request: the maximum 

revenue request served by opt in the (i − 1)th window.
(In Lemmas 6 and 7 of Appendix 3 we show that the revenue earned by SBP

′ is no 
greater than the revenue earned by sbp.)

Let Qi , Q′
i
 , and Q∗

i
 denote the sets of requests served by sbp, SBP

′ , and opt, respec-
tively, in window i. There are two cases based on the performance of sbp.

Case 1: sbp serves at least one request per window.
Again let � = ⌈f∕2⌉ denote the total number of time windows. Let r = ⌈1∕k⌉ . 

We know from Theorem  6 that opt  can serve at most r requests per window. We 
assume without loss of generality that opt  serves exactly r requests per window 
and let �i = �i,1, �i,2, ..., �i,r denote the r revenues earned by opt  in window i. Con-
sider the first window of opt  and the second window of SBP

′ . In the first window, 
opt  earns revenues �1 = �1,1, �1,2, ..., �1,r . In the second window, SBP

′ serves the 
maximum revenue request from �1 . Therefore, rev(Q∗

1
) =

∑r

k=1
�1,k ≤ r ⋅ max{�1} 

and rev(Q�
2
) = max{�1}. So we have rev(Q∗

1
) ≤ r ⋅ rev(Q�

2
). Similarly, we have 

rev(Q∗
i
) ≤ r ⋅ rev(Q�

i+1
) for all i = 1, 2, ...,� − 1. Summing up for all i = 1, 2, ...,� − 1 , 

we know

From Lemmas 6 and 7 of Appendix 3 we know the right-hand-side of (17) is no 
more than the total revenue earned by sbp during all � windows.

Specifically, Lemma 6 defines a another subroutine, called SBP
′′ , that, for 

every window, serves the highest revenue available request and shows why 
rev(SBP

��) ≥ rev(SBP
�) . Lemma 7 shows why rev(SBP) ≥ rev(SBP

��) , so we know 
rev(SBP) ≥ rev(SBP

�).∑�−1

i=1
rev(Q∗

i
) ≤ r

∑�

i=1
rev(Qi) . Since the revenue earned by opt in the last (i.e., 

�th ) window is bounded by a constant c, 
∑�

i=1
rev(Q∗

i
) ≤ r

∑�

i=1
rev(Qi) + c. In other 

words, rev(OPT) ≤ r ⋅ rev(SBP) + c = ⌈1∕k⌉ ⋅ rev(OPT) + c.  
Case 2: There may be empty windows (i.e., windows where sbp serves nothing). 

Let w denote the last empty window that occurred during the entire time limit and 
let � denote the start time of window w. We analyze the requests served before, dur-
ing, and after w.

•	 Before window w: since sbp serves nothing during window w, we know that all 
requests released before time � have been served by sbp. Let b denote the total 
revenue of these requests. We know that before � , opt could have earned rev-
enue at most b.

•	 During window w: opt earns revenue �w,1, �w,2, ..., �w,r and sbp earns nothing.

(17)
�−1∑

i=1

rev(Q∗
i
) ≤ r

�∑

i=2

rev(Q�
i
).
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•	 After window w: now we proceed by running SBP
′ which serves the maximum 

revenue request served in the previous window in the opt  schedule. Similar to 
(17), we have rev(Q∗

i
) ≤ r ⋅ rev(Q�

i+1
) for all i = w, w + 1, ...,� − 1. Summing 

up for all i = w, w + 1, ...,� − 1 yields 
∑�−1

i=w
rev(Q∗

i
) ≤ r

∑�

i=w+1
rev(Q�

i
). From 

Lemma  6 (in the Appendix) we know that r
∑�

i=w+1
rev(Q�

i
) is no more than 

the total revenue earned by sbp during all windows after window w, therefore ∑�−1

i=w
rev(Q∗

i
) ≤ r

∑�

i=w+1
rev(Qi). Since the revenue earned by opt in the last (ie. 

�th ) window is bounded by a constant c, we have 

So:

Combining 19 and 20 we have:

Which means rev(OPT) ≤ ⌈1∕k⌉ ⋅ rev(SBP) + c.

6 � Nonuniform revenues and uniform metric

In this section we consider ROLDARP for nonuniform revenues and uniform 
weight, a useful variant for settings where requests take roughly the same amount 
of time to serve (e.g., in urban areas). The problem was first studied in [17], where 
it was shown that no deterministic algorithm can earn the revenue that an optimal 
offline schedule earns in the last time unit. In [17] the simple greedy greatest rev-
enue first (grf) algorithm was presented for this variant and shown to have com-
petitive ratio 2, provided that the revenue earned by the optimal offline schedule in 
the last time unit is bounded by a constant. This version of the problem was then 
studied in [1] where we presented the best path (bp) algorithm as a less naive, more 
exhaustive greedy algorithm for the problem. At every time unit, bp finds and serves 
the request-path with the highest score, or revenue per time unit. Specifically, the 
score(P) of a request-path P is the total revenue of the requests in P divided by the 
time it takes to complete P, including the time it takes to move from the current 
server location to the start of P.

(18)
�∑

i=w

rev(Q∗
i
) ≤ r

�∑

i=w+1

rev(Qi) + c.

(19)rev(OPT) =

�∑

i=1

rev(Q∗
i
) ≤ b +

�∑

i=w

rev(Q∗
i
) ≤ b + r

�∑

i=w+1

rev(Qi) + c

(20)rev(SBP) =

�∑

i=1

rev(Qi) = b + 0 +

�∑

i=w+1

rev(Qi).

(21)
rev(OPT) − c

rev(SBP)
≤

b + r
∑�

i=w+1
rev(Qi)

b +
∑�

i=w+1
rev(Qi)

≤
rb + r

∑�

i=w+1
rev(Qi)

b +
∑�

i=w+1
rev(Qi)

= r.
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We demonstrate that although bp seems to perform better on average than the 
simpler grf algorithm (see Section 7), unlike grf’s competitive ratio of 2, the com-
petitive ratio of bp is unbounded.

In the instance shown in Fig.  2, opt  serves a “chain” of requests, i.e., with no 
moves in between requests. Specifically, at time t = 1 , opt (omnisciently) moves 
to the source of a request that arrives at t = 2 and then serves it, completing it at 
t = 3 ; it then serves the next request from t = 3 to t = 4 and so on until complet-
ing the last request at time T. In general, for m = 2,… , T − 1 opt serves a request 
with revenue 2m−2 . On the other hand, at t = 0 , bp moves to the request with rev-
enue 𝜖 > 0 , since it is the only released request, and serves it from t = 1 to t = 2 . At  
t = 2 , it finds a path that continues from its current location containing two consecu-
tive requests with revenues � and 1, which has a score of (� + 1)∕2 = 1∕2 + �∕2 . 
Since this path has higher score than the path opt  is serving which has score 1/2, 
bp begins to serve this path. However after serving the first request and earning rev-
enue � , it then finds another path of two consecutive requests that have the highest 
score of (� + 2)∕2 = 1 + �∕2 and begins serving this path, again earning revenue � . 
Meanwhile, the path served by opt during this time, and any other available path, 
has score at most 1. bp continues this way, serving only the first request of each path 
it finds and earning revenue � every time. So we have:

(22)rev(OPT) =

T−1∑

m=2

2m−2 = 2T−2 − 1

1

(2)

2 4 8 16 32 64

(3) (4) (5) (6) (7) (8)

(0) (2) (3)

BP:      + + + ... 

OPT:   1 + 2 + 4 + ...

Revenue Earned

...

1 2 3 4 5 6

8762 3 4 5

1 2 4 8(2) (3) (4) (5)

(4) (5) (6) (7) (8)

16 (6) (7) (8)

7 8

32 64

...

Fig. 2   An instance for which bp’s competitive ratio is unbounded. Requests served by bp are shown on 
top (dotted edges) while the requests served by opt are shown below. The number below each node indi-
cates the time at which the corresponding algorithm reaches that node. The value above (or left of) each 
edge indicates the revenue of the corresponding request. The value in parentheses below (or right of) 
each request is the release time of that request. bp serves the first two requests with revenue � , then only 
the first request of each chain of length 2
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and:

So as � approaches 0, rev(OPT)∕rev(BP) approaches infinity.

7 � Experimental Results

In this section we provide experimental results on sbp and bp.

7.1 � Experimental Results for SBP

To evaluate the performance of the sbp  algorithm, we simulated three realistic 
Online Dial-a-Ride systems. Our experimental settings were informed by inter-
views with representatives from real-world Dial-a-Ride organizations ([18–20]) and 
reflected three Dial-a-Ride environments: rural, suburban, and urban. The problem 
inputs varied based on the environment type. In [1], we evaluated sbp experimen-
tally under the same three environments where the source, destination, and release 
times of requests were uniformly distributed. To simulate a more realistic environ-
ment, we now assume nonuniform distributions that were informed by the real-
world Dial-a-Ride systems mentioned above.

We now describe the three environments more specifically. In each environment, 
a time unit is 10 minutes, so there are 6 time units per hour. The graph is complete 
and contains 50 nodes where five of these nodes are designated “hot-spots”, i.e., 
they are 10 times more likely to be chosen as a source or destination (but the same 
node cannot be both the source and destination of a request). The origin is randomly 
chosen from the set of nodes. The release times of requests are non-integral values 
distributed from t = 0 to t = T  as follows. For each environment, certain hours of the 
day are designated as “rush-hours”. During these hours, requests are 4 times more 
likely to be released than during non-rush-hour times. The rush-hours are as follows: 
for Rural and Suburban: 8-9am, 12-1pm, and 4-5pm; for Urban: 7-9am, 12-1pm, 
and 5-7pm. Request priorities are integral values uniformly distributed from 1 to 
m where m is the number of requests (we tested m = 25, 50, 75 , and 100). The time 
limits and maximum edge weights for each environment are as follows: 

1.	 Rural: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54 . The maximum 
distance between locations is 60 minutes (i.e., 6 time units), so T∕f = 6 and f = 9 . 
Edge weights are chosen uniformly at random from the interval [1, T/f].

2.	 Suburban: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54 . The maximum 
distance between locations is 45 minutes (i.e., 4.5 time units), so T∕f = 4.5 and 
f = 12 . Edge weights are chosen uniformly at random from the interval [1, T/f].

(23)rev(BP) =

T−1∑

m=1

� = (T − 1)�.
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3.	 Urban: Time spans 13 hours (from 6:00am to 7:00pm), so T = 78 . The maximum 
distance between locations is 20 minutes (i.e., 2 time units), so T∕f = 2 and 
f = 39 . Edge weights are chosen uniformly at random from the interval [0.5, T/f].

Since R-DARP is NP-hard to solve optimally ([1]), we do not compare sbp  to the 
optimal schedule. Additionally, since, to our knowledge, sbp  is the only algorithm 
that has been published for this variant of OLDARP, we compare sbp  to an offline 
version of itself, as well as to a basic greedy algorithm similar to one proposed  
in [12]. Like sbp, the offline-sbp  algorithm serves requests in time segments - i.e., 
it uses one time segment to determine and move to the maximum-revenue-request-
set and the next time segment to serve this set. However, unlike sbp, this offline 
algorithm learns of all the requests at the start of time ( t = 0 ) and is therefore able 
to make a more informed decision about which requests to serve. In contrast, the 
greedy algorithm does not break time into segments and instead simply moves to 
and serves the outstanding request whose revenue is highest (similar to the grf 
algorithm of [17]). One significant advantage that the greedy algorithm has is that, 
unlike sbp and the offline algorithm, it may not spend a time segment moving after 
each time segment it spends serving. In other words, if after serving a set of requests 
(or a single request) for T/f time, the greedy algorithm finds itself at a node from 
which another request originates, it can continue on to serve this request, rather than 
wait T/f time to do so. This is especially advantageous since source and destina-
tions are nonuniformly generated, so a node that is a destination of a request is more 
likely to be a source of another request and the greedy algorithm will serve these 
two requests contiguously.

Figures 3, 4, and 5 show the results of the experimental simulations. The graphs 
show that for all three settings sbp  is competitive (colloquially speaking) with the 

Fig. 3   Revenue earned for rural setting
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offline and greedy algorithms. Specifically, in the rural setting, sbp  earns approxi-
mately 86-88% of the revenue earned by the offline algorithm and 77-91% of the rev- 
enue earned by the greedy algorithm. Furthermore, as the number of requests increases 
from 25 to 100, sbp’s performance over the greedy algorithm also increases.

In the suburban setting, sbp earns approximately 82-85% of the revenue earned 
by the offline algorithm. For m = 25, 50, and 75 sbp  earns 87-96% of the rev- 
enue earned by the greedy algorithm and for m = 100 , sbp earns 11% more than 

Fig. 4   Revenue earned for suburban setting

Fig. 5   Revenue earned for urban setting
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the greedy algorithm. As in the rural setting, as the number of requests increases 
from 25 to 100, sbp’s performance over the greedy algorithm increases.

Finally, in the urban setting, sbp earns approximately 80-84% of the revenue earned 
by the offline algorithm and 80-90% of the revenue earned by the greedy algorithm.

We note that while the greedy algorithm often outperforms sbp, it has an unbounded 
competitive ratio, while sbp has a constant-competitive worst-case guarantee. Specifi-
cally, the greedy algorithm will choose the highest revenue request regardless of the 
time it takes to serve this request; let pmax and T/f denote the revenue and time for this 
request. In the meantime, the optimal schedule may serve k requests where each has 
revenue slightly less than pmax and takes time T/(fk). As k increases, the ratio of the rev-
enue earned by the greedy algorithm to that earned by opt approaches infinity.

Overall, these simulation results suggest that sbp  would be effective in real-
world on-demand dial-a-ride systems.

7.2 � Experimental Results for BP

To evaluate the performance of the bp  algorithm (see Section  6), we simulated 
an Online Dial-a-Ride system on a graph with uniform edge weights. The graph 
is complete and contains 50 nodes. The time limit T = 24 and release times of 
requests are integral values uniformly distributed from t = 0 to t = T  . Request pri-
orities are integral values uniformly distributed from 1 to m where m is the num-
ber of requests (we tested m = 25, 50, 75, 100, and 125). Recall that a request’s 
priority represents the urgency of the request (i.e., transport to a pharmacy is 
more urgent than to a shopping mall).

Fig. 6   Revenue earned for bp vs. grf with 50 nodes and T = 24
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Figure 6 shows that for all values of m, bp performs as well as or better than 
grf. The figure suggests that although bp has an unbounded competitive ratio 
(while grf’s ratio is 2), the algorithm’s approach to choosing paths that are more 
likely to yield higher total revenue may yield improved performance in practice.

8 � Conclusions

We studied the Revenue-On-Line-Dial-a-Ride Problem (ROLDARP), provided 
improved upper and lower bounds for the segmented best path  (sbp) algorithm, 
and proved that our new upper bound is tight. We also applied the algorithm to the 
uniform revenue variant and proved an upper bound of 4, given that the revenue 
earned by opt  in the last two time segments is bounded by a constant (justified by 
Lemma 1) and the number of time segments is bounded by a constant. This bound is 
nearly tight due to the lower bound instance provided in [1]. We then applied sbp to 
complete bipartite graphs, a problem we refer to as ROLDARP-B, and showed that 
ROLDARP on general graphs reduces to ROLDARP-B. Since the reduction relies 
on edge weights being arbitrarily small, we impose a minimum edge weight and 
prove that when revenues are nonuniform, sbp  has competitive ratio ⌈1∕k⌉ , where 
k is the ratio between the minimum and maximum edge weights in the graph (and 
the revenue earned by opt in the last two time segments is bounded by a constant). 
When revenues are uniform, we show that sbp  is strictly ⌈1∕k⌉-competitive (so the 
additive term of the nonuniform revenue variant can now be dropped). Finally, we 
provide experimental results that suggest that sbp would perform well in real-world 
on-demand dial-a-ride systems. Open problems include finding online algorithms 
that achieve or come closer to the general lower bound of 2 or proving that the gen-
eral lower bound is more than 2.

Appendix

In this section we provide supplementary proofs for our results in the main sections.

Proof of general lower bound for uniform revenues

Theorem  8  Even if revenues are uniform, no non-preemptive deterministic online 
algorithm for ROLDARP can be guaranteed to earn more than half the revenue 
earned by OPT in the first T − 2T∕f  time units.

Proof  Consider the following instance with f = 5 (so there are 5 time segments of 
length T/f). For simplicity, we let X = T∕f  denote the length of a time segment and 
therefore the maximum distance between two locations, so T = 5X . We let the uni-
form revenue be 1. Fix a positive integer k and let � = X∕(4k) . Let d(u, v) denote the 
distance between locations u and v.
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The graph will consist of nodes s0, ai, bi, zi, cj, dj, e
(m)

j
, f

(m)

j
, ( 0 ≤ i ≤ 3 , 0 ≤ j ≤ k , 

1 ≤ m ≤ 4k − 1 ), with distances

•	 d(a2, a3) = d(b2, b3) = d(z2, z3) = �,
•	 d(a3, a4) = d(b3, b4) = d(z3, z4) = X − �,
•	 d(ci, cj) = d(di, dj) = |i − j|X∕k

•	 d(e
(m)

i
, e

(m)

j
) = d(f

(m)

i
, f

(m)

j
) = |i − j|(X − m�)∕k,

•	 d(ck, e0) = d(dk, f0) = (m − 1)�.

All distances are X unless otherwise stated above.
Let opt denote an optimal offline schedule, let on denote a deterministic online 

algorithm and let s0 denote the origin, i.e., the location of on and opt at time 0. At 
time X let s be the node that ON is at or moving toward. Pick two of a1, b1, z1 that 
are not s. Because the graph is symmetric in the a’s, b’s, and z’s, we may w.l.o.g. 
pick a1, b1 . Then on cannot have been moving toward a1 or b1 at a time t1 < X . The 
adversary releases requests r1 = (a1, a2, X, 1) and r2 = (b1, b2, X, 1) . We do a proof 
by cases that depend on when on headed toward a1 or b1 . 

1.	 Case: on does not heads toward a1 or b1 before time 2X + � . Then the adversary 
releases r3 = (b2, b0, 2X + �, 1) . At time 2X + � , on has only 3X − � time left, 
which is insufficient to serve more than one request. So on earns at most revenue 
1 while opt earns 2 in time 3X via s0, b1, b2, b0.

2.	 Case: on moves from some node at time 2X ≤ t1 < 2X + 𝛿 to either a1 or b1 , 
which we can say is a1 without loss of generality. The adversary releases request 
r3 = (b3, b4, 2X + �, 1) . Then on will be at a1 at time t1 + X ≥ 3X . So on can serve 
at most one request because there is at most time 2X remaining. On the other 
hand, opt can earn revenue 2 in time 3X via the path s0, b1, b2, b3, b4.

3.	 Case: on moves from some node at time X < t1 < 2X toward either a1 or b1 , which 
we can assume w.l.o.g. to be a1 . The adversary releases request r3 = (b2, b0, 2X, 1) . 
Then on arrives at a1 at time t1 + X > 2X . There is less than time 3X remaining 
and so it is impossible to earn more than revenue 1, while opt earns 2 in time 3X 
via s0, b1, b2, b0.

4.	 Case: on moves from some node at time t1 = X toward either a1 or b1 , which 
we can assume w.l.o.g. to be a1 . Then the adversary releases the requests: 
r�

i
= (ci−1, ci, X + �, 1) , r��

i
= (di−1, di, X + �, 1) , for i = 1,… , k . So on arrives at 

a1 at time 2X. 

a.	 Case: on does not head toward any of a2, ci, di before time 3X − � . At time 
3X − � , call s the node that on is at or heading toward. Because simulta-
neously exchanging f

(m)

i
 with e(m)

i
 and ci with di is a graph isomorphism, 

we can w.l.o.g. assume this s is not one of the f
(m)

i
 . The adversary releases 

r̄i = (f
(4k−1)

i−1
, f

(4k−1)

i
, 3X − 𝛿, 1) for i = 1,… , k . Note the chain of r̄1,… , r̄k has 

total length � and d(dk, f
(4k−1)

0
) = X − 2� . There is time 2X + � remaining. That 

is insufficient time to serve more than k + 1 requests. On the other hand, opt 
can earn 2k in time 3X via s0, d0, (pause time�), d1,… , dk, f

(4k−1)

0
,… , f

(4k−1)

k
.
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b.	 Case: on heads toward a2 at time t2 with 2X ≤ t2 < 3X − 𝛿 . The adversary 
releases r̄i = (f

(4k−1)

i−1
, f

(4k−1)

i
, 3X − 𝛿, 1) for i = 1,… , k . Then on arrives at a2 at 

time t2 + X ≥ 3X . There is time at most 2X remaining; then it is not possible 
to serve more than k additional requests. So ON earns at most 1 + k , while opt 
can earn 2k in time 3X via s0, d0, (pause time �), d1,… , dk, f

(4k−1)

0
,… , f

(4k−1)

k .
c.	 Case: on heads toward some ci0

 or di0
 at time t2 with 2X ≤ t2 < 3X − 𝛿 . 

We can assume w.l.o.g. on is heading toward some ci0 . Let 1 ≤ m ≤ 4k − 1 
such that 2X + (m − 1)𝛿 ≤ t2 < 2X + m𝛿 .  The adversary releases 
r̄i = (f

(m)

i−1
, f

(m)

i
, 2X + m𝛿, 1) for i = 1,… , k . Then on arrives at ci0 at time 

t1 + X ≥ 3X + (m − 1)� . There is at most 2X − (m − 1)� time remain-
ing. Note that the chain r̄1,… , r̄k has total length X − m� , and thus it 
takes at least time 2X − m� to serve this chain from ci0 . Thus on can serve 
at most k requests. On the other hand, opt can earn 2k in time 3X via 
s0, d0, (pause time�), d1,… , dk, f

(m)

0
,… , f

(m)

k
.

	    In all subcases of Case 4, on earns at most revenue 1 + k while opt earns 2k. 
So OPT

ON
≥ 2k∕(1 + k).

Proof of Lower Bound for SBP with Nonuniform Revenues

The following lemma is used for the proof of the sbp lower bound (Theorem 2).

Lemma 5  �k ≥ 4kh + 1 for k = 1… f∕2 − 2.

Proof  Recall that for each k = 1… f∕2 − 2 , OPT
′ arrives at vertex u2k at time  

�k = 1 + m(h + 1) + (1 + h)(k − 1) . By definition of m = ⌊(3hf − 4h − f + 2)∕(2(h

+1))⌋ , we know

So

Then

We then rewrite as

m ≥ (3hf − 4h − f + 2)∕(2(h + 1)) − 1.

m(h + 1) ≥ (3hf − 4h − f + 2)∕2 − (h + 1).

�k ≥ 1 + (3hf − 4h − f + 2)∕2 − (h + 1) + (1 + h)(k − 1).

�k ≥1 + (3f∕2 − 2)h − f∕2 + 1 − h − 1 + k − 1 + h(k − 1) − 4kh + 4kh

≥1 + 4kh + (3f∕2 − 2 + k − 1 − 1 − 4k)h − f∕2 − 1 + k

≥1 + 4kh + (3f∕2 − 4 − 3k)h − f∕2 − 1 + k

≥1 + 4kh + (3f∕2 − 4 − 3k)h − f∕2 + 4∕3 + k − 1 − 4∕3

≥1 + 4kh + (3f∕2 − 4 − 3k)(h − 1∕3) − 1 − 4∕3.
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Since k ≤ f∕2 − 2 , then 3k ≤ 3f∕2 − 6 . Then 3f∕2 − 6 − 3k ≥ 0 . Hence 3f∕2−

−4 − 3k ≥ 2 . So

Thus we have shown �k ≥ 1 + 4kh.

Proofs for Bipartite Graphs

The proof of Theorem 7 (in Section 5.2) relies on the fact that rev(SBP) ≥ rev(SBP
�) 

which we now prove using the following two lemmas. Recall that within the ith win-
dow SBP

′ serves exactly one request: the maximum revenue request served by opt 
during the (i − 1)th window. We now create another subroutine, called SBP

′′ , that, for 
every window, serves the highest revenue available request. Lemma 6 shows why 
rev(SBP

��) ≥ rev(SBP
�) , and Lemma 7 shows why rev(SBP) ≥ rev(SBP

��) , so we know 
rev(SBP) ≥ rev(SBP

�).

Lemma 6  Let O′ and O′′ denote the set of revenues of the � = ⌈f∕2⌉ requests served 
by SBP

′ and SBP
′′ by the end of window � , sorted in descending order. Let O�[z] and 

O��[z] denote the zth element of O′ and O′′ , respectively, where z = 1, 2, ...,� . Then:

Proof  We proceed by strong induction. Recall Q′
i is the set of revenues of all requests 

served by 
SBP

′ during window i. Let Q
′′
i  and Q∗

i
 denote the set of revenues of all 

requests served by 
SBP

′′ and opt, respectively, during window i.
Base case. z = 1 . We know that O�[1] = max{Q∗

1
∪ Q∗

2
∪ ... ∪ Q∗

�−1
}.

Consider 
SBP

′′ during the last window; there are two cases: 1. SBP
′′ has served a 

request with revenue equal to or larger than O�[1] = max{Q∗
1
∪ Q∗

2
∪ ... ∪ Q∗

�−1
} ; 2. 

SBP
′′ has not served such a request.
In the first case, no matter which request SBP

′′ serves in the last window, 
O��[1] ≥ O�[1].

In the second case, SBP
′′ will choose one available request with the maximum rev-

enue to serve in the last window, so Q′′
� will have revenue either equal to 

max{Q∗
1
∪ Q∗

2
∪ ... ∪ Q∗

�−1
} or larger than max{Q∗

1
∪ Q∗

2
∪ ... ∪ Q∗

�−1
} . Thus, when 

SBP
′′ is done, O��[1] ≥ O�[1].
Inductive case. Suppose O��[z] ≥ O�[z] is true for z = 1, 2, ..., l . Consider 

z = l + 1 . We will show by contradiction that O��[l + 1] ≥ O�[l + 1] . Suppose 
O��[l + 1] < O�[l + 1].

By the definition of O′′ , we know O��[1], O��[2], ..., O��[l] are the l largest revenues 
served by SBP

′′ , and

(3f∕2 − 4 − 3k)(h − 1∕3) − 1 − 4∕3 ≥2(h − 1∕3) − 2(h − 1) − 4∕3

≥2h − 2∕3 − 2h + 2 − 4∕3 ≥ 0.

(24)rev(SBP
��) =

�∑

z=1

O��[z] ≥

�∑

z=1

O�[z] = rev(SBP
�).
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From the inductive hypothesis,

Given the ordered nature of O′ , we have

Given O��[l + 1] < O�[l + 1] , (26), and (27), we have

The general approach of this proof is that, if the request that corresponds to the rev-
enue O�[l + 1] is not the request that corresponds to any of O��[1], O��[2], ..., O��[l] , 
then the (l + 1)th largest request selected by SBP

′′ would have been O�[l + 1] instead 
of O��[l + 1] , since O��[l + 1] < O�[l + 1] . This is a contradiction. Now we must 
affirm that the request corresponding to O�[l + 1] does not correspond to any of 
O��[1], O��[2], ..., O��[l] . To verify this precondition, we consider the two possible 
cases of (28).

Case 1. If O��[l] > O�[l] or O�[l] > O�[l + 1] , then given (26) and (27), the conse-
quence of this case will be O[l] > O�[l + 1] . More generally, taking into account (25) 
and (28), we have

which tells us that revenue O�[l + 1] does not correspond to any of O��[1], O
��[2],

..., O
��[l] . Therefore O�[l + 1] should have been the (l + 1)th largest value of the set O′′ 

instead of O��[l + 1] , which is a contradiction.
Case 2a. If O��[l] = O�[l] = O�[l + 1] > O��[l + 1] and the request that corre-

sponds to O�[l + 1] never corresponds to any revenue among O��[1], O��[2], ..., O��[l] , 
then O�[l + 1] should also have been the (l + 1)th largest value of the set O′′ instead of 
O��[l + 1] , which is a contradiction.

Case 2b. If O��[l] = O�[l] = O�[l + 1] > O��[l + 1] , and the request that corre-
sponds to O�[l + 1] also corresponds to O��[g] for some 1 ≤ g ≤ l , which indicates 
that

From the ordered nature of O’ and the inductive hypothesis, we know

Combined with the fact that O��[g] = O�[l + 1] , it must be the case that

(25)O��[1] ≥ O��[2] ≥ ... ≥ O��[l].

(26)O��[l] ≥ O�[l].

(27)O�[l] ≥ O�[l + 1].

(28)O��[l] ≥ O�[l] ≥ O�[l + 1] > O��[l + 1].

(29)O��[1] ≥ O��[2] ≥ ... ≥ O��[l] > O�[l + 1] > O��[l + 1],

(30)O��[g] = O��[g + 1] = ... = O��[l] > O��[l + 1].

(31)O��[g] ≥ O�[g] ≥ O�[g + 1] ≥ ... ≥ O�[l + 1].

(32)O��[g] = O�[g] = O�[g + 1] = ... = O�[l + 1].
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Given that there could exist elements in O′′ prior to O��[g] that are equal to O�[l + 1] , 
we let O��[x] be the first element in O′′ that is equal to O�[l + 1] , where 1 ≤ x ≤ g . 
Similar to (31), we have

Combining (33) and O[x] = O�[l + 1] , we know that

Now we know that in O′′ , there are (l − x + 1) elements that have revenue O�[l + 1] , 
while in O′ , there are ((l + 1) − x + 1) = (l − x + 2) elements with revenue O�[l + 1] . 
The set O′ has one more element with revenue O�[l + 1] than the set O′′ . This is a 
contradiction because then SBP

′′ would have chosen the extra request in O’ that has 
revenue O�[l + 1] to serve instead of directly serving O��[l + 1].

Lemma 7  Let SBP
��[i] and SBP[i] denote the ith window served by SBP

′′ and sbp respec-
tively. Define U = {1, 2,… ,�} as the set of all possible indices of windows. Define 
Aj and Bj as any two subsets of U that satisfy the following criteria: 

1.	 Both Aj and Bj are of size j and are in increasing order.
2.	 Aj[m] ≤ Bj[m] for all m = 1, 2,… , j , where Aj[m] is the mth element of Aj and Bj[m] 

is the mth element of Bj.
3.	 For requests served in {SBP

��[Aj[1]], SBP
��[Aj[2]]… SBP

��[Aj[j]]} , if they are ever 
served by sbp, then they are served only in {SBP[Bj[1]], SBP[Bj[2]]… SBP[Bj[j]]}.

Then, for all such possible Aj and Bj , we have

Proof (by induction)  Base case. When j = 1 , we assume A1[1] ≤ B1[1] and that if 
the request served by SBP

��[A1[1]] is served by sbp, it is served only in SBP[B1[1]] . 
This implies that the request served in SBP

��[A1[1]] is available to SBP[B1[1]] , so 
given the greedy nature of sbp, rev(SBP[B1[1]]) ≥ rev(SBP

��[A1[1]]) . From (24) we 
can say

Inductive Case. We assume that: 
∑j

m=1
rev(SBP

��[Aj[m]]) ≤
∑j

m=1
rev(SBP[Bj[m]])  

for all j where 1 ≤ j ≤ k . Then we want to prove for all possible Ak+1 and Bk+1,

(33)O��[x] ≥ O�[x] ≥ O�[x + 1] ≥ ... ≥ O�[l + 1].

(34)O��[x] = O�[x] = O�[x + 1] = ... = O�[l + 1].

j∑

m=1

rev(SBP
��[Aj[m]]) ≤

j∑

m=1

rev(SBP[Bj[m]]).

1∑

m=1

rev(SBP
��[A1[m]]) ≤

1∑

m=1

rev(SBP[B1[m]]).
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There are two cases: 

1.	 rev(SBP
��[Ak+1[k + 1]]) ≤ rev(SBP[Bk+1[k + 1]])  

2.	 rev(SBP
��[Ak+1[k + 1]]) > rev(SBP[Bk+1[k + 1]])  

If the first case is true, then combining it with the inductive hypothesis, (35) is 
clearly true.

If the second case is true, we denote r as the request served in window 
SBP

��[Ak+1[k + 1]] . Then the equation of case 2 can be rewritten as

Eq. (36) implies that r is not available to SBP[Bk+1[k + 1]] , because otherwise in  
window Bk+1[k + 1] sbp would have served some request(s) whose total revenue is at 
least the revenue of r. Suppose it is at window SBP[Bk+1[h]] that sbp serves r where 
1 ≤ h < k + 1.

Define new subsets Ak and Ck where Ak = Ak+1�{Ak+1[k + 1]} and 
Ck = Bk+1�{Bk+1[h]} . It is evident that both Ak and Ck are of size k. Define Ak[m] as 
the mth element of the newly defined Ak , and Ck[m] as the mth element of the newly 
defined Ck.

Here we declare a shortcut of notation. For any set V and integers s ≤ t , 
V[s ∶ t] = {V[s], V[s + 1],… , V[t − 1], V[t]}.

One observation is that for each element Ck[m] of Ck , we have Ck[m] ≥ Ak[m] . 
This is because each element of Ck will be minimized when Ck[1] = Bk+1[1] , 
Ck[2] = Bk+1[2] , … , Ck[k] = Bk+1[k] respectively. Since we know Bk+1[m] ≥ Ak+1[m] , 
we have Ck[m] ≥ Ak[m] . There are two sub-cases: 

1.	 If SBP[Bk+1[h]] does not contain any of the requests of SBP
��[Ak[1 ∶ k]] : Then Ak 

and Ck satisfy the three criteria listed in the lemma, so according to the inductive 
hypothesis, 

 Adding rev(r) on both sides of (37), we have 

(35)
k+1∑

m=1

rev(SBP
��[Ak+1[m]]) ≤

k+1∑

m=1

rev(SBP[Bk+1[m]]).

(36)rev(SBP[Bk+1[k + 1]]) < rev(r).

(37)
k∑

m=1

rev(SBP
��[Ak[m]]) ≤

k∑

m=1

rev(SBP[Ck[m]]).

(38)
k+1∑

m=1

rev(SBP
��[Ak+1[m]]) ≤

k∑

m=1

rev(SBP[Ck[m]]) + rev(r)
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 Note the second ≤ sign is valid since all the requests corresponding to ∑k

m=1
rev(SBP[Ck[m]]) + rev(r) are served in sbp  (and sbp may serve additional 

requests as well).
2.	 If SBP[Bk+1[h]] contains any of the requests of SBP

��[Ak[1 ∶ k]] : Then Ak and 
Ck violate criterion (3) (since Bk+1[h] is not in Ck ) so the inductive hypoth-
esis cannot be applied directly. Suppose there are n such requests where 
n ≤ k , and denote the total revenue of those n requests as N. Then we define 
Ak−n = Ak�{indices of windows where the n requests reside in SBP”} . We also 
shrink Ck to Ck−n by removing n windows that do not contain any of the requests of 
Ak−n . Then we can follow the same reasoning above to deduce Ck−n[m] ≥ Ak−n[m] 
for all 1 ≤ m ≤ k − n . So according to the inductive hypothesis, 

 Adding N and rev(r) on both sides, we have 

 Note the second ≤ sign of (41) is valid since all the requests corresponding to ∑k−n

m=1
rev(SBP[Ck−n[m]]) + N + rev(r) are served in sbp (and sbp may serve addi-

tional requests as well).
Finally, to prove rev(SBP) ≥ rev(SBP

��) , we let j = � , A� = {1, 2,… ,�} , B� =

{1, 2,… ,�} . This satisfies (1) A� and B� are in increasing order, (2) A�[m]

≤ B�[m] for all m = 1, 2,… ,� , and (3) for requests served in {SBP
��[A�[1]],

SBP
��[A�[2]]… SBP

��[A�[�]]} , if they are ever served by sbp, are served only in windows 
{SBP[B�[1]], SBP[B�[2]]… SBP[B�[�]]} . Therefore, rev(SBP) ≥ rev(SBP

��) is simply a  
specific case of 

∑j

m=1
rev(SBP

��[Aj[m]]) ≤
∑j

m=1
rev(SBP[Bj[m]]) where j = �.
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(39)≤

k+1∑

m=1

rev(SBP[Bk+1[m]]).

(40)
k−n∑

m=1

rev(SBP
��[Ak−n[m]]) ≤

k−n∑

m=1

rev(SBP[Ck−n[m]]).

(41)
k+1∑

m=1

rev(SBP
��[Ak+1[m]]) ≤

k−n∑

m=1

rev(SBP[Ck−n[m]]) + N + rev(r)

(42)≤

k+1∑

m=1

rev(SBP[Bk+1[m]]).
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