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Abstract. We study the problem of mazimizing the probability of arriving on time in a stochastic
network. Nodes and links in the network may be congested or uncongested, and their states change
over time and are based on states of adjacent nodes. Given a source, destination, and time limit,
the goal is to adaptively choose the next node to visit to maximize the probability of arriving to the
destination on time. We present a dynamic programming solution to solve this problem. We also
consider a variation of this problem where the traveler is allowed the option to wait at a node rather
than visit the next node. For this setting, we identify properties of networks for which the optimal
solution does not require revisiting nodes.
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1 Introduction

Transportation networks are inherently uncertain with random events such as accidents, vehicle failure,
inclement weather, and road closures often causing congestion and delays. These events often affect a
group of locations and roads in a region of the network, rather than just one location. Congestion at one
location is likely to cause congestion at nearby locations and roads. Fortunately, new technologies make
it increasingly easy for travelers to obtain real-time information about traffic conditions, allowing them
to make potentially better route decisions. This setting can be modeled with a stochastic network where
a node can be in one of two states: congested or uncongested. Congestion at one node is likely to cause
congestion at nearby nodes and congestion at a node causes congestion at its incident edges. Traversing
an edge in the congested state requires more time than traversing the edge when it is uncongested. Since
the state of a node may change over time and cannot be determined until the node is reached, there is
uncertainty with both node and link states.

For this setting, we consider the problem of maximizing the probability of arriving at a specified
destination node within a given amount of time. Since the network is stochastic, we cannot solve this
problem a-priori. Instead, we solve the problem using a step-by-step approach where for each step, we
make a decision based on the state of the current node, the remaining time, and the conditional congestion
probabilities of adjacent nodes.

Specifically, given source and destination locations, and a maximum time limit, we propose an efficient
dynamic programming solution to find a path from the source to the destination that maximizes the
probability of arriving by the time limit. We find that some optimal routes require revisiting nodes,
which may not be reflective of realistic networks. Therefore, we also consider a variation of this problem
where the traveler has the option to wait at a node rather than visit another node. We identify properties
of networks for which the optimal solution requires waiting at a node rather than revisiting nodes.

2 Related Work

The problem of finding an optimal path in a stochastic network has been studied extensively and numerous
variations of the problem have been considered. Some early examples include [5] and [12] which consider
networks where link costs are random variables following known probability distributions. The work in [5]
studies the problem of finding the path that maximizes the probability of arriving by a predefined time
whereas [12] finds the path that has the highest probability of being the shortest path. The authors of [11]
assume a network where link travel times evolve based on an independent Markov process. They give
solutions for finding a path with minimal expected travel time. The authors of [6] consider a setting where
link travel times depend on the time of day and propose heuristics to estimate the mean and variance of
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arrival times for a source-destination node pair. In [13], the authors study a network setting in which the
state of each link is dependent on the predecessor link, and is independent of the states of nodes. They
develop heuristics to determine the sequence of links to traverse such that the expected travel time is
minimized. For different settings, several works consider the problem of maximizing the expected value
of various utility functions ([2], [8], [9]). However, the authors of [8] show that such utility-based models
can be solved efficiently only if an affine or exponential utility function is employed.

More recently, the authors of [3] considered a network where link costs are based on conditional prob-
abilities of adjacent nodes. They consider the problem of finding the path with the minimum expected
travel time. The authors of [4] consider a network where link costs follow independent probability dis-
tributions. They give an approximate solution to the problem of finding the path that maximizes the
probability of arriving to a destination by a predetermined time. The authors of [10] also assume link
travel times are defined by a probability distribution and propose an algorithm to address a similar prob-
lem: finding the shortest paths to guarantee a given probability of arriving on-time. Recently, the authors
of [7] consider a network setting where the traveler has information about several link travel times (not
just adjacent links) and give heuristics for maximizing a general utility function.

In this work we consider the stochastic setting studied in [3] where the congestion probability for
nodes and links depend on nearby nodes. Whereas they focus on minimizing expected travel time, we
focus on a different goal: given a source, destination, and desired arrival time, find the sequence of nodes to
visit that maximizes the probability of arriving on time. Whereas previous studies proposed approximate
solutions to routing problems in stochastic networks ([4]), we provide a dynamic programming solution
that, given a maximum time limit, yields an exact solution to the problem. We also consider the cycling
policy, described in [13], where the traveler has the option to revisit locations; and the waiting policy,
described in [1], where the traveler has the option to wait at a location. Both policies may help to improve
the objective function. We compare these policies by identifying networks for which the waiting policy
will always be more beneficial than the cycling policy.

3 Problem Statement

We consider the Arriving on Time Problem. The input is a network with n nodes, a source node s, a
destination node d, and a time limit ¢t. The goal is to find the path that maximizes the probability of
arriving to d from s within time ¢. Since the states of nodes can change, we cannot determine the optimal
path a-priori. Instead, once we arrive at a node, we must adaptively determine the next node to visit
that maximizes the probability of reaching d given the remaining time. We assume that there is a time
limit T},q, such that for every pair of vertices ¢ and j, t cannot exceed Typa-

For adjacent nodes ¢ and j, let P.(j]¢) denote the conditional probability that j is congested given
that 4 is congested and let P,(j]7) denote the conditional probability that j is uncongested given that 4 is
uncongested. Then if ¢ is congested, j is uncongested with probability 1 — P.(j]¢) and if ¢ is uncongested
then j is congested with probability 1 — P,(j]¢). To reach node j directly from i, we must traverse the
edge (i,7). It takes t.(i,7) > O time units to traverse (4, 7) if ¢ is congested and ¢,(7,7) > 0 time units
if 4 is uncongested. We assume the uncongested travel time is no more than the congested travel time
80 ty(1,7) < te(i,4). For simplicity, we assume that if ¢ is congested, we can reach an adjacent node j
within ¢ time units with probability 0 if ¢ < ¢.(¢,7) and with probability 1 if ¢ > ¢.(4, 7). Similarly if 4
is uncongested, we can reach an adjacent node j within ¢ time units with probability 0 if ¢ < t,(3, )
and with probability 1 if ¢ > ¢,(4,7). Note that extending this model so that these probabilities are
instead determined by a distribution is straightforward. Let N!(i) denote the set of nodes, j, such that
j is adjacent to i and t > t.(i,7) and let N/ (i) denote the set of nodes, j, such that j is adjacent to
i and t > t,(4,7). Then if node i is congested or uncongested, we consider all nodes in N!(i) or N/ (i),
respectively, for the next possible node to visit.

In Fig. 1(a), suppose we determine that j is the optimal node to visit from ¢. Since i is congested,
traversing link (i, j) will take time t.(i,5) and in Fig. 1(b), since 4 is uncongested, traversing link (4, 5)
will take time t,(4, 7). In either case, once we arrive at node j, if j is congested then traversing any link
from j will take time equal to the congested time of the link. If j is uncongested then traversing any link
from j will take time equal to the uncongested time of the link. Once we arrive at j we find the optimal
next node to visit as we did for node i. Specifically, we find the node that yields the maximum on-time
arrival probability from j given the amount of time remaining.
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Fig. 1. Traversing link (¢, 7). (a) Since 7 is congested, traversing link (4, j) takes time (%, j). (b) Since 7 is uncon-
gested, traversing link (i, 7) takes time ¢,(4, 7). When we arrive at j, it will be either congested or uncongested.
In either case we must find the next node to visit that maximizes the on-time arrival probability from j.

For all nodes i and some destination, let P!(i) denote the maximum probability of arriving to the
destination on time given ¢ time units when i is congested; and let P!(7) denote the maximum on-time
arrival probability given ¢ time units when 4 is uncongested. Suppose node i is currently congested. If
Jj is the optimal next node to visit, then when we move from ¢ to j, j will either be congested (with
probability P.(j]¢)) or uncongested (with probability 1 — P.(j|7)). In either case, we will have ¢t — ¢.(, j)
time units remaining and we would like to maximize the probability of arriving on time from j to the
destination with the remaining time. In Fig. 2(a), if j is congested, the probability of arriving to the

destination on time from j is Pct_t“(i’j)(j). If j is uncongested, the probability is Pi_t“(i’j)(j). If instead,

i was uncongested (see Fig. 2(b)), then the maximum on-time arrival probability from j is Pct*t“(i’j )(j)
t

(if j is congested) or Puft“(i’j)(j) (if j is uncongested).

In this manner, we can determine the optimal sequence of nodes to visit from the source to the
destination and the maximum probability of arriving on time. Notice that we cannot determine the
optimal node to visit from j until we arrive at j and observe its state. For example, if j is congested, the
optimal next node may be = and if j is uncongested the optimal next node may be y.

Figure 3 shows a simple example of the problem. Assume the source is s and the destination is d.
For the conditional probabilities, assume P.(a|s) = .9, P.(b|s) = .6, P,(als) = .7, and P,(b|s) = .6. For
the travel times, assume t.(s,a) = 6, t.(a,d) = 7, t.(s,b) = 5, to(b,d) =9, tu(s,a) = 5, ty(a,d) = 4,
ty(s,b) =4, and t,,(b,d) = 3. The optimal path depends on both the state of s and the time limit. If s is
congested, then with a time limit of ¢ = 10 units, the optimal path is s-b-d with probability P°(s) = .4,
whereas path s-a-d yields probability .1. However, if s is uncongested, then the optimal path is s-a-d with
probability P19(s) = .7, whereas path s-b-d yields probability .6. If we have a time limit of t = 7 and s is
uncongested, then the optimal path is s-b-d with probability P/ (s) = .6, whereas s-a-d yields probability
0. If s is congested, then both paths yield probability 0.

The general problem can be solved with the following dynamic programming formulation:
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Fig. 2. Traversing a graph for the Arriving on Time Problem. (a) Since ¢ is congested, link (z,j) costs t.(%, ) so
we have t — ¢.(4,j) time units remaining when we arrive at j. (b) Since ¢ is uncongested, link (7, j) costs t.(z,7)
so we have t — t, (4, j) time units remaining. When we arrive at j, it will be either congested or uncongested. In
either case we must find the next node to visit that maximizes the on-time arrival probability from j.
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Fig. 3. Example of the Arriving On-Time Problem. Congested/uncongested travel times are shown beside each
edge. In this example, the optimal path depends on the state of the source node and the time limit.
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for all t > 0 if 7 is the destination
for all ¢ > 0 if 7 is the destination
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P!(i) = 0 if i is not the destination and t < t.(i, ) for all j adjacent to i

s (PP () + (L= PGl P09 (1)} otherwise
JjE

P!(i) = 0 if i is not the destination and ¢ < t,(4, ) for all j adjacent to 4

max {P,(j]i)Pi7 1D (5) + (1 — Py (j]i)) Pt ()} otherwise
VjENL (3)

The algorithm can be implemented in a manner similar to Dijkstra’s shortest path algorithm. For a
graph with n nodes and maximum time limit 7},.., it requires O(n2TmaI) space and time.

Proposition 1. The quantities P!(i) and PL(i) are non-decreasing in t.

Proof. We will prove that P(i) > P{=1(i) for all ¢ > 1. The proof also holds for P!(i).

Base Case: If i is the destination then for all ¢ > 1, P!(i) = 1 so P!(i) = P!=1(i). If i is not the destination,
then for t = 1, PI=1(i) = PY(i) = 0, so P!(i) = P! > P%(i).

Inductive Hypothesis. Assume P!(i) > P!=1(i) and PL(i) > PL=1(i).
We will show PIT1(i) > P(i).

PERL) = max (PGP G) + (1= PGP ()

By the inductive hypothesis, we know pltitte (6.3 )(j) > Pfﬁtc(i’j)(j) and Pi“ftc(i’j)(j) > Piftc(i’j)(j)

P (i) > o max APl NP () 4 (1= Peljli)) Py (7))

= Pi(i)

Similarly, P:TL(i) > PL(i).

3.1 Node Revisiting

In the current problem formulation, the optimal route from the source to the destination may include
revisiting one or more nodes. For example, suppose we arrive at a congested node ¢ and there is a short
path from ¢ to the destination that yields a low on-time arrival probability if taken when ¢ is congested
(see Fig. 4). Suppose from i, we can also traverse a cycle such that the probability of returning to 4
in the congested state is small. Then, the optimal solution may be to traverse this cycle if doing so
yields a higher on-time arrival probability than directly heading towards the destination from ¢ in the
congested state. The subgraph in Fig. 4 shows an example where continuously revisiting a node improves
the probability of arriving on time. Suppose we would like to arrive at d from s in the congested state.
Assume P.(i|j) = P.(j|i) = .6, and P.(i|s) = P,(i|j) = P,(jli) = .9. Assume t.(i,d) = 10 and t,,(i,d) = 1
Assume that both the congested and uncongested travel times of all other edges are one time unit, so
te(x,y) = ty(z,y) = 1 for all edges (z,y) except (i,d). In this example, traveling directly from s to d
without traversing the cycle containing nodes i and j yields probability P?(s) = 0.1. However, with two
additional time units, traversing the cycle containing i and j, specifically with the path s—i—j—i—d, yields
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Fig. 4. Example where revisiting node ¢ improves the on-time arrival probability. Congested/uncongested travel
times are shown beside each edge.

probability P2(s) = .625. Similarly, traversing the cycle twice and thrice yields probabilities PS(s) = .756
and P3(s) = .789, respectively. The example shows that revisiting a node may help to improve the
probability of arriving to the destination within the time limit.

However, this scenario does not reflect realistic situations. Specifically, if we are at a congested location,
traversing a cycle to revisit the location would never yield the highest probability of arriving on time. If
heading directly towards the destination from a congested location is unlikely to get us to the destination
on time, then a better option would be to simply wait at the current location (for a short time) for the
congestion to clear up.

It is possible that after waiting for some time, the location will become uncongested and therefore
yield a higher probability of arriving on time. When the location becomes uncongested, we can then
decide which route will yield the highest on-time arrival probability. In the following section we consider
a variation of the problem that models this more realistic setting.

4 Waiting Option

We now present a version of the Arriving on Time Problem where the traveler has the option to wait
at a congested node (in the hopes that the node will become uncongested). As described above, in real-
world situations, we may decide to wait at a congested location for traffic to clear up and the location
to become uncongested. However, we would find no reason to wait at an uncongested location for it to
become congested. Therefore, we assume that the option to wait only applies to a node in the congested
state.

As before, P.(j]i) denotes the conditional probability that j is congested given that i is congested,
P,(j]7) denotes the conditional probability that j is uncongested given that i is uncongested, ¢.(4,j) and
t,(i,7) denote the times to traverse edge (i,j) when ¢ is congested and uncongested, respectively. We
also define a new term P7(i,w), which is the conditional probability that ¢ is congested after waiting at
congested i for w time units. As in the original problem, we limit ¢ and w to Tqz-

As before, P!(i) denotes the maximum probability of arriving to the destination from i in the congested
state, within at most ¢ time units and P! (i) denotes the probability of arriving to the destination from 4
in the uncongested state within at most ¢ time units. Given a source s and a destination, our goal is find
the find the sequence of nodes to visit that maximizes P!(s) and P!(s).

Let us consider the previous example in Fig. 3. If s was congested and the time limit was ¢ = 10, then
paths s-b-d and s-a-d yielded on-time arrival probabilities of .4 and .1, respectively. Now, suppose we
have the option to wait at a node. Assume PX(a,1) = .1, so with probability .1, node a stays congested
if we wait at a for one time unit. For simplicity, assume this probability is zero for all other nodes. Then
if s is congested, the optimal solution is to wait at a for one time unit, i.e. by using path s-a-a-d, with
probability P19(s) = .91.

This problem can be solved with the following dynamic programming formulation:
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PY(i) = 0 if i is not the destination (5)
PY(i) = 0 if i is not the destination (6)
P!(i) =1 for all + > 0 if i is the destination (7)
P!(i) =1 for all t > 0 if 4 is the destination (8)
P!(i) = 0 if i is not the destination and ¢ < ¢.(4,5) for all j adjacent to i (9)

maxy;e Nt (i) { Pe (1) Pe Pt (”)(]) (Not waiting at )

+(1 = PP G}
max (10)
maxvey<r,,,, { P (i, w) P (4)
+(1 = Pr(i,w)) P (i)} (Waiting at 7)

P!(i) = 0 if 7 is not the destination and t < t.(i, j) for all j adjacent to i (11)
g {PuGIOPT D (6) + (1= PuGli) P ()} (12)

Proposition 2. The quantities P!(i) and PL(i) are non-decreasing in t.

Proof. We first prove the proposition for P!(i). We will prove that P!(i) > P!~1(i) for all ¢ > 1.

Base Case: If i is the destination then for all ¢ > 1, P!(i) = 1 so P!(i) = P!=1(i). If i is not the destination,
then for t = 1, P!=1(i) = PY(i) = 0, so P!(i) = P}(i) > PY(3).
Inductive Hypothesis. Assume P!(i) > P!=1(i) and PL(i) > PL=1(i).

We will show P!*1(i) > P!(i). From 10, we have:

maxyjen: (s {P(ili) Pe T 09 ()

(1 = P.(jla)) P00 )y (Not waiting at 7)
PIT1(i) = max
MAX< T, 0, { Po (1, w) P (4)

+(1 = Pr(i,w)) Pt (i)} (Waiting at )

maxyjen () {PelJli) P Pt (5

+(1— P(jl0) Pe P ()

> max (By Ind. Hyp.)
MAXyy < T, L Po (1, w) PE(4)
+(1 = P} (i,w)) Py (i)}

= Pi(i)

Proof. We now prove that P! (i) is non-decreasing in t. We show that P! (i) > P:=1(i) for all t > 1.

Base Case: If i is the destination then for all t > 1, PL(i) = 1 so PL(i) = P.~1(i). If i is not the destination,
then for t = 1, PI=1(i) = PO(i) = 0, so PL(i) = P > P2(i).

Inductive Hypothesis. Assume P!(i) > P!=1(i) and PL(i) > PL=1(i)

We will show P:FL(i) > P!(i). From 12, we have:
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PN = max APGIPSTOD () + (L= PuGl)P 0D ()
> max (P[P D) + (1= PGl P (7)} (By Ind. Hyp.)
JEN (i
= Py(0)

4.1 Revisiting vs. Waiting

Recall that in the first version of the problem, where there is no option to wait at a node, revisiting a
node may improve the probability of arriving on time. In this section we focus on the new version of the
problem where the traveler has the option to wait at a node. We identify a class of networks for which
revisiting nodes cannot improve the on-time arrival probability.

We will show that in this new model, revisiting a node cannot improve the on-time arrival probability
for networks that exhibit both of the following two properties:

Property 1. Given some destination, for any node i and some fixed ¢, P! (i) > P!(4). In other words, there
is a higher chance of reaching the destination on time from location ¢ if ¢ is uncongested rather than
congested. This property reflects realistic settings since the presence of traffic at the current location does
not improve the probability of arriving to the destination on time.

Property 2. For any two neighbors ¢ and j, and any w, 1—PX(i,w) > P,(i|j) and 1—P*(i,w) > 1—P.(i|j).
In other words, it is more probable for location i to become uncongested after waiting at ¢ for w time
units than by visiting ¢ from a neighboring node j.

We now prove that for networks that exhibit Properties 1 and 2, revisiting a node cannot improve the
on-time arrival probability. Specifically, we prove that for all nodes i, the arrival probability achieved by
revisiting ¢ after k time units will be no more than the on-time arrival probability achieved by waiting at
a node i for k time units.

0
T-2

4

T-1 ¢ X 7-3

— co. T4
T c_ ~{@_ E/’lv
- ~— -
' o~ ¢~ €
v _ Y — A4 A4
u \L . u W ~——
u b

R é

Fig. 5. Tree,,r.

For this proof, we use the following notion of a Tree of Paths.

Definition 1. Tree of Paths: Given a destination d, for every node v and all time limits T > 0, we can
construct a binary tree of paths, Tree, r that has its root labeled as v and all leaves labeled as d (see
Fig. 5). Treey, 1 is built as follows. Suppose node a is the optimal node to visit from the root v when v is
congested and b is the optimal node to visit from v when v is uncongested. Then in Tree, T, the children
of v will be a and b. Similarly, if x and y are the optimal nodes to visit from a when a is congested and
uncongested, respectively, then the children of a will be x and y. If some node i has a child who is also t,
this means the optimal decision at the parent i is to wait at i for one time unit. Every path in Tree, r is
the optimal path to visit from v, given a sequence of node states and using at most T' time units.

Consider Trees r for some source s, destination d, and time limit 7". There are two ways that a path
from s to d on Trees r may contain a repeating node i (see Fig. 6). We now describe these two types
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Fig. 6. Two paths with repeating node 1.

of paths. Type 1: For some k > 0, ¢ first appears when there are ¢ + k£ time units remaining, reappears
when there are t time units remaining, and each node between the first and second appearance is not
1. Paths of Type 1 indicate that the optimal solution requires visiting ¢ when there will be ¢t + k time
units remaining and then revisiting ¢ when there will be ¢ time units remaining (see Fig. 6(a)). Type 2:
For some k > 0, i appears in a consecutive sequence for k time units. Paths of Type 2 indicate that the
optimal solution requires waiting at i for k time units (see Fig. 6(b)). We will show that for networks
that exhibit Properties 1 and 2, only paths of Type 2 exist in Treey 7. In other words, a repeating node,
1, in an optimal path indicates the decision to wait at ¢, rather than revisit 4.

Theorem 1. For any network that exhibits Properties 1 and 2, the on-time arrival probability achieved
from a path that requires waiting at a node © will be greater than the on-time arrival probability achieved
from a path that requires revisiting i.

Proof. Consider a path P from Trees r. P represents the optimal path from s to the destination given
T time units and a sequence of node states. There are four possible cases where a path P may contain a
repeating node i: Case 1) i is uncongested in the first appearance and uncongested in the last appearance;
Case 2) 7 is uncongested in the first appearance and congested in the last appearance; Case 3) 7 is congested
in the first appearance and uncongested in the last appearance; and Case 4) i is congested in the first
appearance and congested in the last appearance. We will first show that if P is an optimal path then
Cases 1) and 2) cannot occur. We will then show that Cases 3) and 4) can occur only if P is a path of
Type 2. In other words, the repeating ¢« must occur from the decision to wait at ¢ rather than revisit i.

Let ¢ + k denote the number of time units remaining after the first occurrence of ¢ and let ¢ denote
the number of time units remaining after the last occurrence of i (see Fig. 7).

Case 1: 7 is uncongested when there are ¢ + k time units remaining and uncongested when there are ¢
time units remaining. From Proposition 2, we know PL**(i) > P!(i). Since visiting i the first time (when
there will be ¢ 4+ k time units remaining) yields a higher probability than visiting i the last time (when
there will be ¢ time units remaining), there is no need to revisit i, therefore Case 1 cannot occur.

Case 2: i is uncongested when there are ¢t + k time units remaining and congested when there are ¢
time units remaining. By Property 1 we have:
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Fig. 7. A path with repeating node 1.

PR6) > PEFR () (13)

From Proposition 2 we have:

PR i) > Pi) (14)

Therefore P+*(7) > P!(i). As in Case 1, since visiting 4 the first time yields a higher probability than
visiting ¢ the last time, there is no need to revisit 4, therefore Case 2 cannot occur.

Cases 3 and 4: 7 is congested when there are ¢t + k£ time units remaining. The following is true if ¢
is in either state (congested or uncongested) when there are ¢ time units remaining. We will prove by
contradiction that both cases can occur only with paths of Type 2.

Consider path P in Fig. 6(a) and path P in Fig. 6(b). Both paths start at source s and end at
destination d. Assume that P and (to the contrary) P are the optimal paths given a time limit and
sequence of node states. Suppose that P and P are identical up to the first appearance of node i. In path
P, we first visit 4 when there will be ¢ + k time units remaining, we then visit a sequence of nodes (none
of which are i), and finally, revisit i when there will be ¢ time units remaining. In other words, path P
contains a cycle starting and ending at ¢ (see Fig. 6(a)). In path P, we wait at i for k time units, starting
when there will be ¢ + k time units remaining and ending when there will be ¢ time units remaining (see
Fig. 6(b)). Let 7; denote the last occurrence of i on path P and let 4, denote the last occurrence of i on
path P. We will show that the on-time arrival probability from #; will always be more than that of 7,.
Since replacing the subpath from i to 7; in P with the subpath from i to 4; in P will always yield a higher
on-time arrival probability, P cannot be optimal. In other words, waiting at a node will always yield a
higher on-time arrival probability than revisiting a node.

We first consider P (i.e. paths of Type 1) and the on-time probability achieved from 4. Recall that
we reach i after revisiting 4 after k& time units. Let a denote the node immediately before 4; in P (see

Fig. 6(a)).

Sub-Case 1: a is congested. We first consider the case where a is congested. Node i will be congested with
probability P.(i|a) and uncongested with probability 1 — P.(i|a). If ¢ is congested, then with probability
P(i), we will reach d on time; if node i is uncongested, then with probability P! (i) we will reach d on
time. Therefore, we can express the on-time arrival probability from 7; given that the previously visited
node was a in the congested state as follows:

Pe(ila) P2 (i) + (1 = Pe(ila)) P (i) (15)

We now consider P (i.e. paths of Type 2) and the on-time probability achieved from . Recall that
we reach 7 after waiting at 4 for k& time units. Node i will be congested with probability P (i, k) and
uncongested with probability 1 — P*(i, k). If there are ¢ time units remaining and ¢ is congested, then
with probability P?(i), we will reach d on time; if node i is uncongested, then with probability P (i) we
will reach d on time. Note that since % represents node i during the last time unit of waiting at ¢, the
node following 7 cannot be i. Therefore the arrival probability from % is:
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P (i, k)PL(i) + (1 — Pr(i, k) Py (i) (16)

We will prove by contradiction that for networks exhibiting Properties 1 and 2, (15) always yields a
lower probability than (waiteq).
For networks exhibiting Properties 1 and 2, assume the contrary:

Po(ila)Pi(i) + (1 = Pe(ila)) P, (i) > P (i, k)Pe(i) + (1 = PZ(i, k)P (i)
Po(ila)P2(i) + Py (i) — Pe(ila)Py(i) > PZ(i, k)Pe(i) + Py(i) — Pr(i, k) Py (i)
Pe(ila)[Pe (i) — Py ()] > Pr(i, k)[Pe (i) — P, (i)]

By Property 1 we know P!(i) < P%(i), so we have:

Pe(ila) < P (i, k) (17)
which violates Property 2 (i.e. 1—P.(i|a) < 1— P (i, k)), which contradicts our assumption. Therefore,

if a is congested, we achieve a higher arrival probability from waiting at ¢ for k£ time units than by revisiting
1 after a.

Sub-Case 2: a is uncongested We now consider the case where a is uncongested. Then the arrival proba-
bility from 7, is:
(1 = Pu(ila))P2(i) + Pu(ila) Py (q) (18)

Again, the arrival probability achieved from waiting at i for k£ time units is:

P (i, k)P(i) + (1 — P2 (i, k) Py (i) (19)

Again, we will prove by contradiction that for networks exhibiting Properties 1 and 2, (18) always
yields a lower probability than that of (19).
For networks exhibiting Properties 1 and 2, assume the contrary:

Py (i, k)PL(i) + (1 = PZ (i, k) P(i) < (1 — Py(ila)) P:(i) + Py(ila) Py (i)
Py (i, k) P(i) + Py(i) — P; (i, k) Py (i) < Py (i) — Pu(ila) Py (i) + Py(ila) Py (3)
P (i, k) [P (i) — Py ()] + Py(i) < Py(ila)[Py(i) — P(i)] + Py (i)
Py (i, k)[P2(i) — Po()] + Py(i) — P(i) < Pu(ila)[Py(i) — P(i)]
1—Pr(i k) < Py(ila)

which violates Property 2, which contradicts our assumption. Therefore, if a is uncongested, we achieve
a higher arrival probability by waiting at ¢ for k time units than by revisiting ¢ k£ time units after a.

We have shown that regardless of the state of a, waiting at node ¢ will yield a higher on-time probability
than revisiting <.

We have shown that Cases 3 and 4 are the only situations where an optimal path may contain a
reappearing node. We have also shown that in both of these cases, for networks that exhibit Properties 1
and 2, only paths of Type 2 may occur (i.e. paths where the reappearing node occurs from the decision to
wait at the node) and not paths of Type 1 (i.e. paths where the reappearing node occurs from the decision
to revisit the node). This affirms our claim that for these networks, the on-time arrival probability achieved
from waiting at a node will be greater than the on-time arrival probability achieved from revisiting a
node.
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5 Conclusion

We study the problem of finding the path that maximizes the probability of arriving to a destination
from a source within a specified time limit. We present an efficient dynamic programming solution that
solves this adaptive routing problem. We prove that as the time limit increases, the maximum probability
also increases. We also show that for some networks, revisiting a node is required to achieve the optimal
probability. Since this is contrary to most realistic settings, we consider a variation of the problem where
the traveler is always given the option to wait at a node rather than visit another node. We identify two
important properties of networks in this setting: (1) The on-time arrival probability from any node is
always higher if the node is uncongested rather than congested; and (2) a node is more likely to become
uncongested after waiting at the node for any amount of time than from visiting it from an adjacent
node. For networks with these properties, we prove that the optimal solution will not require revisiting
nodes, which is reflective of most realistic settings.
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