
A Two-Pass Algorithm for Unordered Colored Bin Packing

Hamza Alsarhan, Davin Chia, Ananya Christman?, Shannia Fu, and Yanfeng Jin

Middlebury College, Middlebury VT 05753
{halsarhan, dchia, achristman, sfu, yjin}@middlebury.edu

Abstract. In the Colored Bin Packing problem a set of items with varying weights and colors must
be packed into bins of uniform weight limit such that no two items of the same color may be packed
adjacently within a bin. We consider a version of the problem where there is no ordering among the
items. We present exact, linear-time algorithms for this problem for the cases where there are two or
more colors when the items have zero weight and when the items have unit weight. Our algorithms
require only two passes over the input items. We also find closed-form expressions for the optimal
number of bins.

Keywords: algorithms, combinatorial optimization, bin packing, colors, class constraints

1 Introduction

The Bin Packing problem is a classical optimization problem with many practical applications related to
minimizing time or space. The Colored Bin Packing problem is a variation proposed by Bohm et al. [2]
and independently by Dosa et al. [4], where we are given a set of items each with a weight and a color.
We have an unlimited number of bins of uniform weight limit and we assume that no item weighs more
than the bin weight limit. The goal is to pack the items in as few bins as possible while maintaining that
no two items of the same color are packed adjacently within a bin. Bohm et al. [2] studied this problem
in the restricted offline setting, where the set of items is received as a sequence and must be packed in
order. We consider a relaxed variation of the problem where the items have no particular ordering and
therefore may be packed in any order.

Formally, the input is a set S of n items and a bin weight limit L. We first consider the case where the
items have zero weight and present a linear time algorithm, Alternate-Zero, that solves this problem
optimally. We then present another linear time algorithm, Alternate-Unit, that solves the problem
optimally for unit-weight items. If the input is as described above, our algorithms require exactly two
pass over each item to perform the packing. In the first pass, we simply separate the items into subsets of
items of the same color while maintaining a count of each subset and the most frequent color. The second
pass performs the packing. We note that the first pass is a pre-processing step and does not involve any
packing. Therefore if the input was instead given as (1) k subsets S1, S2, . . . , Sk where k is the number of
colors, and S1 contains the items of the most frequent color and Si for i > 1 contains the items of color
i, and (2) |S1| (i.e. the number of items of the most frequent color) and |S2| + |S3| + . . . + |Sk| (i.e. the
number of items of other colors), our algorithm would require just one pass to pack the items. Another
advantage of our algorithms is that, similar to many classical Bin Packing algorithms (Best-Fit, First-Fit,
Next-Fit), they are simple; however their optimality is not obvious.

This Colored Bin Packing problem has many practical applications as described in [2]. For example,
television and radio stations often schedule a set of programs on different channels. Each program may
fall into a genre such as comedy, documentary, and sports, on TV, or various musical genres on radio.
To maintain a diverse schedule of programs, the station would like to avoid broadcasting two programs
of the same genre one after the other. This problem can be modeled as Colored Bin Packing where the
items correspond to programs, colors to genres, and bins to channels.

Another application involves generating diverse content to be displayed on websites. Many websites
prefer displays that alternate between different types of information and advertisements and the Colored
Bin Packing problem can be used to generate such a display. The items correspond to the contents to
display, the colors to the type of content, and the bins to the size of the display.

The remainder of this paper is organized as follows. In Section 1.1 we discuss several previous results
related to the Colored Bin Packing problem. In Sections 2 and 3 we present our results for zero-weight and

? Corresponding author

2 Hamza Alsarhan, Davin Chia, Ananya Christman, Shannia Fu, and Yanfeng Jin

unit-weight items, respectively. In Section 4 we provide closed-form expressions for the optimal number
of bins.

1.1 Related Work

Classic Bin Packing is a well known problem, with many applications throughout various fields. Bin
Packing with color constraints is relatively recent, arising with the increasing complexity of contemporary
industrial processes. The use of color gives classic Bin Packing added flexibility in modeling real-world
problems. For example, Oh and Son used color, specifically, the requirement that two items with the same
color cannot be packed in the same bin, to efficiently assign tasks in real time within a multiprocessor
system [10]. Their result was a modified First Fit algorithm that is 1.7-competitive in the worst case, and
1.1 in the average case. Dawande et al. investigated a version of Colored Bin Packing where each bin has
a maximum color capacity [3] i.e. a limit on the number of items of a particular color. Such a problem
models the slab design problem in the production planning process of a steel plant. The authors present
two 3-approximation algorithms, classical First-Fit-Decreasing, and a modified First Fit. Epstein et al.
also studied Colored Bin with color capacities. They prove upper and lower bounds for several variants
of this problem in both the offline and online settings. Xavier and Miyazawa use Bin Packing with Colors
(they refer to the colors as classes) to model Video-on-Demand applications [12]. Specifically, there is a
server of multiple disks that each have limited storage capacity and can hold video files of varying sizes
and genres (i.e. classes). The application is given an expected number of requests for movies based on
movie/genre popularity. The goal is to construct a server that maximizes the number of satisfied requests.
A more generalized version of constrained bin packing where the constraints among items are defined in
a conflict graph have been studied by Jansen [6] and Muritiba et al. [9].

Balogh et al. introduced the Black and White Bin Packing problem with alternation constraints,
where two items with the same color cannot be packed adjacently to each other in a bin [1]. They studied
both the offline and online versions of the problem. For the offline version the authors presented a 2.5-
approximation algorithm. For the online version, they proved that classical algorithms (First, Best, Worst,
Next, Harmonic) are not constant competitive, and hence do not perform well. They further proved a
universal lower bound of approximately 1.7213. This exceeds classical Bin Packing’s upper bound of
1.5889, proving that Black and White Bin Packing with alternation is harder [11]. The authors’ main
result was a 3-competitive online algorithm, Pseudo. The main concept of the algorithm is quite elegant.
Using “pseudo”, i.e. dummy, items of different color and zero weight, their algorithm creates an acceptable
sequence of colors that are later substituted with actually released items. If any bin overflows, Pseudo
redistributes the extra items using Any Fit into available bins, and creates new bins if necessary.

Bohm et al. explored the online Colored Bin Packing with alternation constraints where there two or
more colors [2]. They study this problem for the restricted offline setting, i.e. where the items are presented
in a particular order and must be packed in this order, which is a harder version of the problem we address.
For zero-weight items, they present a recursive algorithm whose straightforward implementation runs in
O(n2) time, where n is the number of items. Although our algorithms solve an easier problem, they
do so with at most two passes over the input. Bohm et al. also show that the optimal number of bins
equals the color discrepancy - the absolute difference between the number of items of the two colors. The
paper’s main result is an optimal online algorithm for the zero-weight case, named Balancing Any Fit,
that operates on the simple principle that an item should be packed in an available bin containing the
most oppositely-colored items. This is made easier since weight is not an issue.

Dosa and Epstein [4] extend the results from [1]. They prove that online Colored Bin Packing with
alternation for 3 or more colors is harder than the 2-color version. Furthermore, the authors show that
2-color algorithms do not apply to 3 or more color problems. They also proved that no optimal algorithm
exists for online Colored Bin Packing when there are more than two colors even when the items have
zero-weight. Lastly, they present a 4-competitive algorithm for the problem. This is a modified version
of the earlier Pseudo, appropriately named Balanced-Pseudo. Instead of randomly assigning items to
available bins, Balanced-Pseudo assigns an item to the bin whose top color is the most frequent.

In this paper we consider the offline Colored Bin Packing problem where there is no ordering among
the items. We present exact linear time algorithms that solve this problem for two or more colors when
the items have zero-weight and when the items have unit-weight. This problem is related to the problem
of finding alternating Euler tours in edge-colored graphs [7]. However, our work is different in that (1) it
applies to bin packing rather than graphs, (2) the unit-weight case of our problem solves the bounded-

A Two-Pass Algorithm for Unordered Colored Bin Packing 3

length version of the alternating tour problem which has not yet been explicitly solved [8], and (3) our
algorithms solve the problems using at most two passes over the input items.

2 Zero-Weight Colored Bin Packing

For the zero-weight case, the input is a set S of n items, where each item has a color from a set of k
colors and weight zero. The Algorithm alternate-zero solves the zero-weight case. We let MaxColor
denote the most frequent color, i.e. the color with the most number of items, OtherColors denote the
set of all other colors and MaxCount and OtherCount denote the number of items of MaxColor and
OtherColors, respectively. In the zero-weight case, the bins do not have a weight limit so the only
constraint is that no items of the same color may be packed adjacently in a bin. As in [2], we find that
the number of bins depends on the discrepancy of the items, i.e. the difference between the number of
MaxColor and OtherColors items.

Algorithm 1: alternate-zero(S: set of n items)

1: Separate S into S1, S2, . . . , Sk where S1 contains the items of the most frequent color, MaxColor, and
Si, for i > 1, contains the set of all items of color i. Also maintain:
MaxCount: number of items of MaxColor,
OtherColors: set of all non-MaxColor colors,
and OtherCount: number of items of OtherColors

2: D = MaxCount−OtherCount
3: if D ≤ 0 then
4: Alternate between OtherColors items until there is one fewer OtherColors item than

MaxColor item remaining.
5: Start with a MaxColor item and alternate between an OtherColors item and a MaxColor item

until all items are packed.
6: else
7: Alternate between a MaxColor item and an OtherColors item until all OtherColors items are

packed.
8: There will be MaxCount−OtherCount− 1 remaining MaxColor items so pack each in its own bin.
9: end if

Theorem 1. The Algorithm alternate-zero is optimal for the Zero-Weight Colored Bin Packing Prob-
lem.

Proof. We let D = MaxCount − OtherCount denote the discrepancy and consider two cases based on
D.

Case 1: D ≤ 0. In this case there are at least as many OtherColors items as there are MaxColor items.
Therefore, we need only one bin, which is the fewest number of bins any algorithm will use. If D = 0,
we simply alternate between MaxColor and OtherColors items. If D < 0, we alternate between items
of OtherColors until there is one fewer OtherColors item than MaxColor item. At this point, we add
one MaxColor item to the bin and then alternate between an OtherColors item and a MaxColor item
until all items are packed. Therefore, we use one bin. Note that to pack the items using exactly one pass,
we must first alternate between OtherColors items before packing any MaxColor items. This ensures
that we are not left with two or more OtherColors items of the same color.

Also note that when D < 0 (i.e. there are more MaxColor items than OtherColors items) there
will be enough OtherColors items to alternate between until there is one fewer OtherColors item than
MaxColor item. Suppose, by contradiction, that this is not the case, so when we can no longer alternate
between OtherColors items, the number of OtherColors items is equal to or more than the number of
MaxColor items. If we can no longer alternate between OtherColors items, it must mean that there is
only one color, say C, remaining in the set of OtherColors items left to pack. Let c denote the number
of C-colored items left to pack, so c ≥ MaxCount. Since we must have packed at least one C-colored
item and no MaxColor items, there must have been at least c + 1 ≥MaxCount + 1 C-colored items in
the input, which contradicts that MaxColor is the most frequent color.

4 Hamza Alsarhan, Davin Chia, Ananya Christman, Shannia Fu, and Yanfeng Jin

As an example, if we are given 4 White (W), 3 Black (B), 3 Yellow (Y), and 1 Red (R) items,
then MaxColor is White, MaxCount = 4, OtherCount = 7, so D = −3. An optimal packing is:
BYBYWBWYWRW. Note that if we started by packing a MaxColor item (a tempting choice), we
would need to use at least two passes to pack all the items.

Case 2: D > 0. In this case, there are enough MaxColor items that each OtherColors item is needed to
be packed in between two MaxColor items. Therefore, all OtherColors items can be regarded as a single
color not equal to MaxColor, making this the black/white bin packing problem [1]. The first bin will start
with a MaxColor item, alternate between MaxColor and OtherColors items, and end with a MaxColor
item. Thus, the first bin will contain all the OtherColors items and OtherCount + 1 MaxColor items.
There will be MaxCount−OtherCount− 1 MaxColor items remaining, each of which must be packed
in a separate bin. This gives a total of MaxCount−OtherCount bins, i.e. the discrepancy. Since the first
bin contains as many MaxColor items as possible and none of the additional bins can be combined, this
is the optimal packing.

As an example, if we are given 8 W, 2 B, and 2 Y items, then MaxCount = 8, OtherCount = 4, so
D = 4. An optimal packing is: WBWBWYWYW / W / W / W (where / denotes a new bin).

3 Unit-Weight Colored Bin Packing

For the unit-weight case, the input is a set S of n items, where each item has a color from a set of
k colors and unit weight, and a bin weight limit L. The general idea of Algorithm alternate-unit is
as follows. The unit-weight case introduces weight constraints. However, color constraints, specifically
the discrepancy, may force us to use more bins than the weight constraint alone. Specifically, if discrep-
ancy does not pose a problem (i.e. is not more than zero), we simply pack the items using a modified
Alternate-Zero that packs at most L items per bin. If discrepancy is more than zero, the packing de-
pends on whether L is even or odd. In both cases, we start with a MaxColor item and alternate between
MaxColor and OtherColors items. If L is even, it may be optimal to not pack each bin full. Instead we
should save OtherColors items for packing in between excess MaxColor items. If L is odd, every full
bin will contain one more MaxColor item than OtherColors item, so our packing may eventually reduce
discrepancy to zero. If so, we pack the remaining items as we did in the zero-weight case. Otherwise, we
will have bins containing only a single MaxColor item.

Lemma 1. If D > 0 we can pack at most D bins that contain one more MaxColor item than OtherColors
item before the discrepancy reduces to zero.

Proof. Packing one such bin reduces the discrepancy to D − 1, packing two such bins reduces the dis-
crepancy to D − 2, and so on. Therefore, packing D such bins reduces the discrepancy to D − D = 0.
Therefore, if OtherCount ≥ D(L/2 − 1) for even L or OtherCount ≥ DbL/2c for odd L, then we can
pack D bins that contain one more MaxColor item than OtherColors item.

Theorem 2. The Algorithm alternate-unit is optimal for the Unit-Weight Colored Bin Packing Prob-
lem.

Proof. As in the zero-weight case, we consider two cases based on the discrepancy:

Case 1: D ≤ 0. We know from the zero-weight case that Alternate-Zero satisfies the color constraint
when discrepancy is less than or equal to 0. Therefore, we call a modified Alternate-Zero that packs
at most L items per bin. Since Alternate-Zero is optimal, this packing will yield the optimal number
of bins.

As an example, if we are given 4 W, 3 B, and 2 Y items, and L = 3, then D = −1 and an optimal
packing is BYW / BWB / WYW.

Case 2: D > 0. This is the complex case as now the packing depends on both the weight and the color
constraints. We pack bins by starting with a MaxColor item and alternating between OtherColors and
MaxColor items. Since the discrepancy is more than 0, there may be MaxColor items remaining. The
remainder of the packing depends on whether L is even or odd.

A Two-Pass Algorithm for Unordered Colored Bin Packing 5

Algorithm 2: alternate-unit(S: set of n items, L: bin weight limit)

1: Separate S into S1, S2, . . . , Sk where S1 contains the items of the most frequent color, MaxColor, and
Si, for i > 1, contains the set of all items of color i. Also maintain:
MaxCount: number of items of MaxColor,
OtherColors: set of all non-MaxColor colors,
and OtherCount: number of items of OtherColors

2: D = MaxCount−OtherCount
3: if D ≤ 0 then
4: Alternate-Zero(S). //apply a modified Alternate-Zero that packs at most L items per bin.
5: else
6: if L is even then
7: if OtherCount < D(L/2)− 1 then
8: while There are OtherColors items remaining do
9: Pack each bin, alternatingly, with L/2 MaxColor items and L/2− 1 OtherColors items.

10: end while
11: There will be MaxColor items remaining. Pack each in a separate bin.
12: else
13: for i = 1 to D do
14: Pack each bin, alternatingly, with L/2 MaxColor items and L/2− 1 OtherColors items.
15: end for
16: Let R denote the set of remaining items.
17: Alternate-Zero(R) //apply a modified Alternate-Zero that packs at most L items per bin.
18: end if
19: else
20: if OtherCount < DbL/2c then
21: while There are OtherColors items remaining do
22: Pack each bin, alternatingly, with dL/2e MaxColor items and bL/2c OtherColors items.
23: end while
24: There will be MaxColor items remaining. Pack each in a separate bin.
25: else
26: for i = 1 to D do
27: Pack each bin, alternatingly, with dL/2e MaxColor items and bL/2c OtherColors items.
28: end for
29: Let R denote the set of remaining items.
30: Alternate-Zero(R) //apply a modified Alternate-Zero that packs at most L items per bin.
31: end if
32: end if
33: end if

6 Hamza Alsarhan, Davin Chia, Ananya Christman, Shannia Fu, and Yanfeng Jin

We first note that when the discrepancy of the remaining items is more than zero, packing as many
MaxColor items as possible into a bin can never yield a sub-optimal solution. This is because the only
reason a MaxColor item should be saved for another bin is if it is needed for packing between two
OtherColors items. However, this will not happen if there are more MaxColor items than OtherColors
items. We use this fact to prove the optimality of our algorithms when discrepancy is more than zero.

• L is even.
Since D > 0 we may end up with single-item bins containing a MaxColor item; we refer to these as
M-bins. Since D > 0, we pack each bin with as many MaxColor items as possible (i.e. L/2). To reduce
the number of M-bins, we save OtherColors items from some bins. The number of OtherColors items
we save is essential - if we save too few, then we may end up with unnecessary M-bins; if we save too
many, then we may end up with OtherColors items of the same color that would need to be packed
into separate bins. From Lemma 1, we know that if we save one OtherColors item from each of D bins,
then the discrepancy of remaining items will be at most zero. Therefore we pack at most D bins this
way and refer to this as the initial packing. We note that there may not be enough OtherColors items
to pack D such bins and in this case, the packing will inevitably yield some M-bins. In particular, if
OtherCount < D(L/2− 1), then we will pack fewer than D such bins, there will be MaxColor items
remaining, and each of these will be packed in an M-bin. If OtherCount ≥ D(L/2− 1) then we can
pack D such bins and the discrepancy reduces to zero. We then apply the modified alternate-zero
to pack the remaining items. The bins packed during the initial packing contain as many MaxColor
items as possible, and we know from Lemma 1, they also contain the optimal number of OtherColors
items. From Theorem 1, we know the bins packed using alternate-zero are optimally packed.
Therefore the entire packing is optimal.
As an example, if we are given 11 W, 3 B, and 3 Y items, and L = 6, then D = 5 and OtherCount <
D(L/2− 1). An optimal packing is WBWBW / WBWYW / WYWYW / W / W.

If we are given 11 W, 6 B, and 3 Y items, and L = 6, then D = 2 and OtherCount ≥ D(L/2 − 1).
An optimal packing is WBWBW / WBWBW / BWBWYW / YWYW.

• L is odd.
We begin by packing bins full, starting with a MaxColor item, alternating between OtherColors and
MaxColor items, and topping with a MaxColor item. We refer to this as the initial packing. Since
L is odd each bin will contain one more MaxColor item than OtherColors item. From Lemma 1
we know that D reduces to zero if we are able to pack D bins this way. As in the even case, if
OtherCount < DbL/2c, then we will pack fewer than D such bins, there will be MaxColor items
remaining, and each of these will be packed in an M-bin. If OtherCount ≥ DbL/2c then we can pack
D such bins and the discrepancy reduces to zero. We then apply the modified alternate-zero to
pack the remaining items. For the same reason as in the even case, this yields an optimal packing.
As an example, if we are given 9 W, 3 B, and 3 Y items, and L = 7, then D = 3, so OtherCount <
DbL/2c. An optimal packing is: WBWBWBW / WBWBWBW / W.

If we are given 7 W, 3 B, and 3 Y items, and L = 7, then D = 1, so OtherCount ≥ DbL/2c. An
optimal packing is: WBWBWBW / YWYWYW.

3.1 Two Pass Algorithms

Our algorithms use exactly two passes over the set of input items. Specifically, in the first pass, the
algorithms separate the items into subsets of items of the same color while maintaining OtherColors,
MaxCount, OtherCount and determining MaxColor. This process requires examining each item exactly
once. It then performs the packing using exactly one pass over each input item.

4 Number of Bins

In this section, we provide closed-form expressions for the optimal number of bins. The zero-weight case
is straightforward: if the discrepancy D is no more than 0, then one bin is needed; otherwise D bins are
needed. For the unit-weight case we consider three sub-cases.

A Two-Pass Algorithm for Unordered Colored Bin Packing 7

1. D ≤ 0: In this case there are enough OtherColors items to pack all the MaxColor items such that
there will be no M-bins. The number of bins depends on the bin capacity: specifically there will be
dn/Le bins.

2. D > 0 and L is even:
We consider two sub-cases based on OtherCount:

• OtherCount < D(L/2− 1):
In this case, we will run out of OtherColors items before packing D bins. In the initial packing
we pack dOtherCount/(L/2− 1)e bins that contain L/2 MaxColor and L/2 − 1 OtherColors
items, so we pack dOtherCount/(L/2− 1)e more MaxColor items than OtherColors items dur-
ing the initial packing. Therefore the initial packing also yields MaxCount − OtherCount −
dOtherCount/(L/2−1)eMaxColor items that are each packed in an M-bin. Therefore, the total
number of bins is dOtherCount/(L/2−1)e+MaxCount−OtherCount−dOtherCount/(L/2− 1)e =
D.

• OtherCount ≥ D(L/2− 1):
In this case, there are enough OtherColors items such that packing D bins with L/2 MaxColor
items and L/2−1 OtherColors items will eventually reduce D to zero, so there will be no M-bins.
Each of these D bins will contain L− 1 items so there will be n−D(L− 1) items remaining after

D bins are packed and we will need

⌈
n−D(L−1)

L

⌉
bins for these items, so the total number of bins

is D +

⌈
n−D(L−1)

L

⌉
.

3. D > 0 and L is odd:
Again we consider two sub-cases based on OtherCount:

• OtherCount < D(L/2− 1):
This case is identical to the even case, so the total number of bins is D.

• OtherCount ≥ D(L/2− 1):
This case is similar to the even case - the only difference is that each of the D bins will contain
L (instead of L− 1) items. So the total number of bins is D +

⌈
n−DL

L

⌉
.

References

1. J. Balogh, J. Bekesi, G. Dosa, H. Kellerer and Z. Tuza. Black and White Bin Packing. Approximation and
Online Algorithms, 10th International Workshop, WAOA, Revised Selected Papers, pp. 131 - 144, 2012.

2. M. Bohm, J. Sgall and P. Vesely. Online Colored Bin Packing. Approximation and Online Algorithms, 12th
International Workshop, WAOA 2014, Revised Selected Papers, pp. 35 - 45, 2014.

3. M. Dawande, J. Kalagnanam and J. Sethuraman. Variable Sized Bin Packing with Color Constraints. IElec-
tronic Notes in Discrete Mathematics, Brazilian Symposium on Graphs, Algorithms and Combinatorics, vol. 7,
pp. 154-157, 2001.

4. G. Dosa and L. Epstein. Colorful Bin Packing. Algorithm Theory, SWAT, pp. 170-181, 2014.
5. L. Epstein, C. Imreh, and A. Levin. Class Constrained Bin Packing Revisited. Theoretical Computer Science,

vol. 411, no. 34, pp. 3073-3089, 2010.
6. K. Jansen. An Approximation Scheme for Bin Packing with Conflicts. Journal of Combinatorial Optimization,

vol. 3, no. 4, pp. 363-377, 1999.
7. Y. Manoussakis. Alternating Paths in Edge-Colored Complete Graphs. Discrete Applied Mathematics, vol. 56,

no. 2, pp. 297-309, 1995.
8. Y. Manoussakis. Personal communication, April 2016.
9. A. E. F. Muritiba, M. Iori, E. Malaguti, and P. Toth. Algorithms for the Bin Packing Problem with Conflicts.

INFORMS Journal on Computing, vol. 22, no. 3, pp. 401-415, 2010.
10. Y. Oh and S. H. Son. On a Constrained Bin Packing Problem. Technical report CS-95-14. Department of

Computer Science, University of Virginia, VA, 1995.
11. S. Seiden. On the Online Bin Packing Problem . Journal of the ACM (JACM) , pp. 640-671, 2002.
12. E. Xavier and F. K. Miyazawa. The Class Constrained Bin Packing Problem with Applications to Video-on-

Demand. Theoretical Computer Science, vol. 393, no 1, pp. 240-259, 2008.

