CSP w/ Back-Tracking + Forward Checking

Colors: \(r, g, b \)

1. Most constrained variable (highest degree)
2. Choose values arbitrarily

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Q</th>
<th>S</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
</table>
| 1 | rgb | **set value**
| 2 | g | gb | r | gb | gb | gb | rgb |
| 3 | b | gb | r | gb | gb | rb |

empty domain

1. \(S \) has highest degree (5), so choose any color: \(r \) (update domains of neighbors)
2. \(N = \) \((4) \) : \(g \)

\(\Rightarrow \) 3. Tie b/w Q+W, choose Q arbitrarily, must choose b.

4. W has empty domain so backtrack to Q.

No other values for Q.
Setting N to g (instead of b) wouldn't help.

Choosing
Setting \(N \) to \(b \) (instead of \(g \)) won’t help
choosing \(W \) instead of \(Q \) won’t help.

Notice: After assigning \(S, N \), there was already a conflict.

\[
\begin{array}{c|c|c|c|c|c|c|c}
N & Q & S & V & W & x & y \\
\hline
[\square] & b & [\square] & gb & b & gb & rb \\
\end{array}
\]

\(Q + W \) are adjacent
and both have only
blue in their domains.

What went wrong?

Checked conflicts with pairs of assigned + unassigned variables but not between pairs of unassigned variables.

i.e. after assigning \(N \), checked:

- \(N \) w/ \(W \)
- \(N \) w/ \(Q \)
- \(N \) w/ \(y \)

but not: \(Q \) w/ \(W \)!