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Abstract. We consider a variant of the offline Dial-a-Ride problem with
a single server where each request has a source, destination, and a prize
earned for serving it. The goal for the server is to serve requests within
a given time limit so as to maximize the total prize money. We con-
sider the variant where prize amounts are uniform which is equivalent
to maximizing the number of requests served. This setting is applicable
when all rides may have equal importance such as paratransit services.
We first prove that no polynomial-time algorithm can be guaranteed to
serve the optimal number of requests, even when the time limit for the
algorithm is augmented by any constant factor c ≥ 1. We also show that
if λ = tmax/tmin, where tmax and tmin denote the largest and smallest
edge weights in the graph, the approximation ratio for a reasonable class
of algorithms for this problem is unbounded, unless λ is bounded. We
then show that the segmented best path (sbp) algorithm from [7] is
a 4-approximation. We then present our main result, an algorithm, k-
Sequence, that repeatedly serves the fastest set of k remaining requests,
and provide upper and lower bounds on its performance. We show k-
Sequence has approximation ratio at most 2+dλe/k and at least 1+λ/k
and that 1 + λ/k is tight when 1 + λ/k ≥ k. Thus, for the case of k = 1,
i.e., when the algorithm repeatedly serves the quickest request, it has
approximation ratio 1 + λ, which is tight for all λ. We also show that
even as k grows beyond the size of λ, the ratio never improves below 9/7.

1 Introduction

In the Dial-a-Ride Problem (DARP) one or more servers must schedule a collec-
tion of pickup and delivery requests, or rides. Each request specifies the pickup
location (or source) and the delivery location (or destination). In some DARP
variants the requests may be restricted so that they must be served within a
specified time window, they may have weights associated with them, or details
about them may be known only when they become available. For most variations
the goal is to find a schedule that will allow the server(s) to serve requests within
the constraints, while meeting a specified objective. Much of the motivation for
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DARP arises from the numerous practical applications of the transport of both
people and goods, including delivery services, ambulances, ride-sharing services,
and paratransit services. For a comprehensive overview of DARP please refer
to the surveys The dial-a-ride problem: models and algorithms [9] and Typology
and literature review for dial-a-ride problems [13].

In this work we study offline DARP on weighted graphs with a single server
where each request has a source, destination, and prize amount. The prize
amount may represent the importance of serving the request in settings such
as courier services. In more time-sensitive settings such as ambulance routing,
the prize may represent the urgency of a request. In profit-based settings, such
as taxi and ride-sharing services, a request’s prize amount may represent the
revenue earned from serving the request. The server has a specified deadline
after which no more requests may be served, and the goal is to find a schedule
of requests to serve within the deadline that maximizes the total prize money.
We study the variant where prizes are uniform so the goal is equivalent to maxi-
mizing the number of requests served within the deadline. This variant is useful
for settings where all requests have equal importance, such as nonprofit trans-
portation services for elderly and disabled passengers and courier services where
deliveries are not prioritized. For the remainder of this paper, we will refer to
this time-limited variant with the objective of maximizing the number requests
served as TDARP.

One related problem is the Prize Collecting Traveling Salesperson Problem
(PCTSP) where the server earns a prize for every location it visits and a penalty
for every location it misses, and the goal is to collect a specified amount of prize
money while minimizing travel costs and penalties. PCTSP was introduced by
Balas [3] but the first approximation algorithm, with ratio 2.5, was given by
Bienstock et al. [4]. Later, Goemans and Williamson [11] developed a primal-
dual algorithm to obtain a 2-approximation. Building off of the work in [11],
Archer et al. [2] improved the ratio to 2 − ε, a significant result as the barrier
of 2 was thought to be unbreakable. More recently, Paul et al. [14, 15] studied a
special case of our problem; namely, the budgeted variant of PCTSP where the
goal is to find a tour that maximizes the number of nodes visited given a bound
on the cost of the tour. They present a 2-approximation when the graph is not
required to be complete and the tour may visit nodes more than once.

Blum et al. [5] presented the first constant-factor approximation algorithm
for a special case of the problem we consider; namely, the Orienteering Problem
where the input is a weighted graph with rewards on nodes and the goal is to find
a path that starts at a specified origin and maximizes the total reward collected,
subject to a limit on the path length. Our problem is a generalization of this
problem – while the Orienteering Problem has as input a set of points/cities
to visit, our problem has a set of requests, each with two distinct points to be
visited: a source and a destination.

To our knowledge, despite its relevance to modern-day transportation sys-
tems, aside from the work in [1] the request-maximizing time-limited version of
DARP we investigate in this paper has not been previously studied in the offline
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setting. In [1] we presented a 3/2-approximation algorithm, twochain, for the
more restrictive uniform edge weight version of the problem.

Our results In Section 2 we begin by establishing some impossibility results.
In Section 2.1 we prove that no polynomial-time algorithm can be guaranteed
to serve as many requests as the optimal schedule, even when the time limit T
for the algorithm is augmented by c for any constant c ≥ 1. We also show that
if λ = tmax/tmin, where tmax and tmin denote the largest and smallest edge
weights in the graph, the approximation ratio for a reasonable class of TDARP
algorithms is unbounded, unless λ is bounded. In Section 2.2 we revisit the
segmented best path (sbp) algorithm that was proposed in [7] for TDARP in
the online setting. We show that sbp in the offline setting is a 4-approximation,
and we also show this is a tight bound.

In Section 3 we present k-Sequence (k-seq), a family of algorithms parame-
terized by k, for TDARP on weighted graphs. Informally, the k-seq algorithm
repeatedly serves the fastest set of k remaining requests where a determination
of fastest is made by considering both the time to serve the requests and any
travel time necessary to serve those requests. Naturally, k is a positive integer.
Our approximation ratio depends on λ, a property of the graph, similar to the
graph-property dependencies in [6, 10]. In many real-world settings, λ may be
viewed as a constant [8, 12, 16]. We prove that k-seq has approximation ratio
2+dλe/k. In Section 3.1 we show that when 1+λ/k ≥ k, the approximation ratio
for k-seq improves to 1 + λ/k. Thus, for the case of k = 1, i.e., the polynomial-
time algorithm which repeatedly serves the quickest request, the approximation
ratio is 1 + λ and this is tight. Finally, in Section 4, we show that k-seq has
approximation ratio at least 1 + λ/k, which matches the upper bound for when
1 + λ/k ≥ k. We also show that the algorithm has a lower bound of 9/7 for
k > λ.

We summarize our results on the approximation ratio for k-seq, for particular
λ and k, as follows.

1. When λ ≥ k(k − 1), or equivalently 1 + λ/k ≥ k, the ratio is 1 + λ/k, and
this is tight. So when k = 1 (for any λ), the ratio is 1 + λ, and this is tight.

2. When k ≤ λ < k(k− 1), then the ratio is in the interval [1 +λ/k, 2 + dλe/k].
3. When λ < k, the ratio is in the interval [max{9/7, 1 + λ/k}, 2 + dλe/k].

2 Preliminaries

We formally define TDARP as follows. The input is an undirected complete
graph G = (V,E) where V is the set of vertices (or nodes) and E = {(u, v) :
u, v ∈ V, u 6= v} is the set of edges. For every edge (u, v) ∈ E, there is a distance
dist(u, v) > 0, which represents the amount of time it takes to traverse (u, v).†

We also note that the input can be regarded as a metric space if the weights

†We note that any simple, undirected, connected, weighted graph is allowed as
input, with the simple pre-processing step of adding an edge wherever one is not present
whose distance is the length of the shortest path between its two endpoints.
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on the edges are expected to satisfy the triangle-inequality. Indeed, all of our
results apply to both complete graphs as well as metric spaces.

One node in the graph, o, is designated as the origin and is where the server
is initially located (i.e. at time 0). The input also includes a time limit T and
a set of requests, S, that is issued to the server. Each request in S can be
considered as simply a pair (s, d) where s is the source node or starting point of
the request, and d is the destination node. The output is a schedule of requests,
i.e. a set of requests and the time at which to serve each. To serve a request, the
server must move from its current location x to s, then from s to d, and remain
at d until it is ready to move again. The total time for serving the request is
dist(x, s) + dist(s, d), where dist(x, s) = 0 if x = s.

Every movement of the server can be characterized as either an empty drive
which is simply a repositioning move along an edge but not serving a request, or
a service drive in which a request is being served while the server moves. We let
driveTime(C) denote the minimum total time for the server to travel from its
current location and serve the collection of requests C ⊆ S, where the minimum
is taken over all permutations of the requests in C.

We use |alg(I)| to denote the number of requests served by an algorithm
alg on an instance I of TDARP and we drop the I when the instance is clear
from context. Similarly we use |opt(I)| for the number of requests served by the
optimal solution opt on instance I.

2.1 Impossibility results

In this section we present two impossibility results. The first is an inapprox-
imability result. The second demonstrates that any algorithm of a class of algo-
rithms that k-seq belongs to will have unbounded approximation ratio, unless
λ is bounded. Accordingly, this provides some justification for the presence of
the parameter λ in our main results.

2.1.1 c-Time inapproximability

We prove that, unless P=NP, no polynomial-time algorithm can be guaranteed
to serve as many requests as the optimal schedule, even when the time limit T
for the algorithm is augmented by any constant factor. Let I = (G,S, T ) denote
an instance of TDARP, where G is the input graph, S is the set of requests,
and T is the time limit. We define alg to be a ρ-time-approximation if alg
serves at least as many requests as opt on the instance (G,S, ρT ). The proof
idea is to show that a polynomial-time c-time-approximation to TDARP yields
a polynomial-time decider for the directed Hamiltonian path problem. Please
see Appendix 6.2 for the proof.

Theorem 1. If P 6= NP , then there is no polynomial-time c-time-approximation
to TDARP for any constant c ≥ 1.

2.1.2 Inductive stateless greedy algorithms
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Recall that λ = tmax/tmin, where tmax and tmin denote the largest and smallest
edge weights in the graph, respectively. We now show that if a deterministic
algorithm satisfies certain properties, then it cannot have a bounded approxi-
mation ratio, unless λ is bounded. Consider the following three properties of an
algorithm. (Note these are abbreviated summaries of each property; please see
Appendix 6.3 for more detailed definitions and the proof of Theorem 2).

1. Inductive. The algorithm chooses paths to take in stages.
2. Stateless. In each stage the algorithm does not use state information from a

previous stage.
3. Greedy. The algorithm makes decisions by optimizing an objective function

at each stage, where the function takes as input a set of possible paths to
choose from and outputs a chosen path.

Theorem 2. Let M be a constant and let alg be a deterministic inductive
stateless greedy algorithm such that the algorithm considers only candidate paths
with at most M edges. If λ is not bounded, then alg has an unbounded approx-
imation ratio.

2.2 The Segmented Best Path (SBP) algorithm

Before we present our main results, we will now analyze an algorithm that is
based on the previously-studied segmented best path (sbp) algorithm from
[7], which was proposed for the online variant of DARP with non-uniform prize
amounts. Specifically, we adapt sbp to apply in our offline setting with uniform
prize amounts. Since our problem assumes uniform prizes, we unsurprisingly
have a tighter upper bound than the bound of [7], but we show that the lower
bound carries over. We note that Theorem 2 does not apply to sbp because there
is no constant that bounds the number of edges in the paths considered by sbp
in each iteration.

Algorithm 1: Segmented Best Path (sbp) Algorithm as adapted
from [7]. Input: origin o, time limit T > 0, a complete graph G (see
footnote † in Section 2) with T ≥ 2tmax, and a set of requests S given
as source-destination pairs.

1: Let t1, t2, . . . tf denote time segments of length T/f ending at times
T/f, 2T/f, . . . , T , respectively, where f = 2bT/(2tmax)c.

2: Let i = 1.
3: while i < f and there are still unserved requests do
4: At the start of ti, find the max-cardinality-sequence, R.
5: Move to the source location of the first request in R.
6: At the start of ti+1, serve the requests in R.
7: Let i = i+ 2.
8: end while
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As described in Algorithm 1, the offline version of sbp starts by splitting
the total time T into f ≥ 2 time segments each of length T/f where f is the
largest even integer such that tmax ≤ T/f , which ensures any move, including
one serving a request, can be completed entirely in a single segment. At the
start of a time segment, the server determines the max-cardinality-sequence, R,
i.e. the maximum length sequence of requests that can be served within one time
segment, and moves to the source of the first request in this set. During the next
time segment, it serves the requests in this set. It continues this way, alternating
between determining and moving to the source of the first request in R during
one time segment, and serving the requests in R in the next time segment.‡

Finding the max-cardinality-sequence may require enumeration of all possible
sequences of unserved requests which takes time exponential in the number of
unserved requests. However, in many real world settings, the number of requests
will be small relative to the input size and in settings where T/f is small, the
runtime is further minimized. Therefore it should be feasible to execute the
algorithm efficiently in many real world settings.

Let opt(S, T, o) and sbp(S, T, o) denote the schedules returned by opt and
sbp, respectively, on the instance (S, T, o).

Theorem 3. sbp is a 4-approximation i.e., |opt(S, T, o)| ≤ 4|sbp(S, T, o)| for
any instance (S, T, o) of TDARP, and this is tight.

Proof. We first note that the lower bound instance of [7], in which sbp earns
total prize money of no more than opt/4 in the online setting, also applies to
this offline setting with uniform prizes, since in that instance prize amounts are
uniform and no requests are released after time 0. (For the full proof of the lower
bound, please see Theorem 8 in the Appendix).

For the upper bound, consider a schedule opt2, which is identical to opt
except it is allowed one extra empty drive at the start that does not add to the
overall time taken by the algorithm. More formally, if the first move in opt is
from o to some node n1, then opt2 may have an additional (non-time-consuming)
move at the start such that its first move is from o to some other node n′1 and
its second move is from n′1 to n1. Since opt2 is allowed one additional empty
drive, we know |opt2(S, T, o)| ≥ |opt(S, T, o)|. We claim that |sbp(S, T, o)| ≥
|opt2(S, T, o)|/4, which implies that |sbp(S, T, o)| ≥ |opt(S, T, o)|/4.

We proceed by strong induction on the number of time windows w = f/2
where a time window is two consecutive time segments. For the base case let Q
and R denote the set of requests served by opt2 and sbp, respectively, in the
first time window and let q and r denote their respective cardinalities. Recall
the greedy nature of sbp which serves requests during every other time segment.
If q = 1, since f ≥ 2, sbp can serve the one request in Q within the two time
segments so r = q. If q > 1, then if q is even, r ≥ q/2 since splitting the window

‡Note that the algorithm need not take a full time segment to move from one set of
requests to another, but it is specified this way for convenience of analysis. Excluding
this buffer time in the algorithm specification does not improve its approximation ratio
since one can construct an instance where each move requires the full time segment.
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in half leaves at least half of the requests in one of the two time segments, and
if q is odd then r ≥ (q − 1)/2.

So if w = 1, in all three cases, we have r ≥ q/4, completing the base case.
For the inductive step, let P denote the path traversed by opt2, let p =

|opt2| ≥ |opt| denote the number of requests served in P , and let u denote
the first node opt2 visits after the end of the first time window. Consider the
subpath, P ′, of P that starts at u. Since P may contain a request that straddles
the first two windows, P ′ contains at least p− (q+1) requests. Let s1 denote the
last node sbp visits before the start of the second time window. After the first
window, sbp is left with a smaller instance of the problem (Snew, Tnew, onew)
where Snew = S − R, Tnew = T − T/f , and onew = s1. So P ′ contains at least
p−(q+1)−r requests from this smaller instance and opt2 on (Snew, Tnew, onew)
can move from onew to u and serve these requests. By induction, on the smaller
instance sbp will serve at least (p− q − 1− r)/4. Thus

|sbp(S, T, o)| = r + |sbp(Snew, Tnew, onew)| ≥ r + (p− q − 1− r)/4
≥ p/4 + (−q − 1 + 3r)/4. (1)

There are three cases for q and r.
1. Case: q ≥ 5. Then since r ≥ (q − 1)/2, from (1) we have: |sbp(S, T, o)| ≥
p/4 + (−q − 1 + 3(q − 1)/2)/4 ≥ p/4 + (q/2− 5/2)/4 ≥ p/4.

2. Case: q ≤ 4 and r ≥ 2. From (1) we have: |sbp(S, T, o)| ≥ p/4 + (−4 − 1 +
6)/4 ≥ p/4.

3. Case: q ≤ 4 and r ≤ 1. If r = 0, then |sbp(S, T, o)| = |opt2(S, T, o)| = 0,
so the theorem is trivially true, therefore, we assume r = 1. We first show
by contradiction that every time window in opt2’s schedule has fewer than
4 requests that end in that window. Suppose there is a window i in opt2’s
schedule that has 4 or more requests that end in window i. Then there are at
least 3 requests that start and end in window i. This implies that at least one
time segment of window i contains at least 2 requests which, by the greediness
of sbp, implies r ≥ 2, which is a contradiction since we are in the case where
r = 1. Let w′ denote the number of windows in which opt2 serves at least 1
request. We have |opt2(S, T, o)| < 4w′ and |sbp(S, T, o)| ≥ min(w, |S|) ≥ w′,
so |sbp(S, T, o)| ≥ |opt2(S, T, o)|/4. �

3 k-Sequence algorithm and upper bound

We now present k-Sequence (k-seq), our family of algorithms parameterized by
k, for TDARP (see Algorithm 2). For any fixed k, the algorithm repeatedly serves
the fastest set of k remaining requests where a determination of fastest is made by
considering both the time to serve the requests and any travel time necessary to
serve those requests. If there are fewer than k requests remaining, the algorithm
exhaustively determines how to serve all remaining requests optimally. If the
remaining time is insufficient to serve any collection of k requests, the algorithm
likewise serves the largest set of requests that can be served within the remaining
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time. We suggest that when using the algorithm in practice, k can be set as a
small constant. The algorithm will run in time O(|S|k+1) where S is the set of
requests, as each of the at most |S| iterations may require time O(|S|k).

Algorithm 2: Algorithm k-Sequence (k-seq). Input: origin o, time limit
T > 0, a complete graph G (see footnote † in Section 2), and a set of
requests S given as source-destination pairs.

1: Set t := T .
2: while there are at least k unserved requests remaining do
3: Let C be the collection of k requests with fastest driveT ime(C), where

driveT ime(C) denotes the minimum total time to serve C.
4: if t ≥ driveT ime(C) then
5: Serve C, update t := t− driveT ime(C), and update S = S − C.
6: else
7: Exit while loop.
8: end if
9: end while

10: Find the largest x ≤ k − 1 s.t. driveT ime(C′) ≤ t for some C′ with |C′| = x.
11: If |C′| 6= 0, serve C′.

Theorem 4. k-seq is a (2 + dλe/k)-approximation for TDARP.

Proof. First, note that without loss of generality, we may assume that it is
possible to serve k requests during the allotted time T . If there was insufficient
time to serve any collection of k requests, then k-seq will serve the largest set
of requests that can be served within time T , which is thus optimal. If there
are fewer than k requests available, k-seq will serve all available requests, again
achieving an optimal solution.

We now proceed with a proof by induction on an instance in which at least
k requests can be served in time T . For the base case, we have bT/tminc = 0, so
T < tmin and thus k-seq and opt both serve 0 requests, so we are done. For the
inductive case, let bT/tminc = d ≥ 1. Suppose by induction that the theorem is
true whenever bT/tminc < d.

Let s = o be the start location. k-seq starts by serving exactly k requests
in time T1, ending at a location we refer to as s1. Let opt serve m requests in
total. Note that since T1 is, by construction of k-seq, the time required to serve
the fastest k requests, opt serves at most k requests during the initial T1 time.

Let y′ be the location on the opt path at time T1, noting that y′ need not
be at a node. Then define y to be y′ if y′ is a node, or the next node on opt’s
path after y′ otherwise.

To develop our inductive argument, we will now create a new instance with
new start location s1, time Tnew = T − T1, and the k requests that were served
by k-seq removed from S, leaving us with Snew.
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We consider P , a feasible path for this new instance (see Figure 1). This
path P starts at s1, proceeds to y, and then traverses as much as it can of
the remainder of the original opt path from y in the remaining time, that is
T − T1 − dist(s1, y) ≥ T − T1 − tmax.§ Since such a path P is feasible, opt’s
path must contain at least as many requests as P . Observe that the segment of
the opt path that P uses from y onward has a distance of at most T − T1.

Since P has time at least T − T1 − tmax left when at y, then P misses at
most (T − T1) − (T − T1 − tmax) = tmax time of the tail of the original opt
path in addition to missing the initial T1 time of the head of the original opt
path. Thus, P misses at most k requests from the head of the original opt path
and at most dλe from the tail of the original opt path, ensuring that P serves
at least m− k− dλe requests from the original instance. Since the new instance
had k requests from the original instance removed, we can now say that P serves
at least m− 2k − dλe requests from the new instance. Naturally, opt must also
serve at least m− 2k − dλe requests on the new instance.

Note tmin and tmax, and therefore λ, remain the same in the new instance.
The allotted time for the new instance is Tnew = T − T1 ≤ T − tmin, giving
b(T − T1)/tminc ≤ b(T − tmin)/tminc = bT/tminc − 1. Hence by induction, the
theorem is true for this new instance. In other words, the number of requests
served by k-seq on the new instance is at least k/(2k + dλe) times the number
of requests served by opt on the new instance. Thus, |k-seq(S, T, o)| = k +
|k-seq(Snew, Tnew, s1)| ≥ k+k/(2k+ dλe)(m−2k−dλe) ≥ k+km/(2k+ dλe)+
k(−2k − dλe)/(2k + dλe) = km/(2k + dλe), completing the induction. �

Fig. 1. An illustration of the paths taken by opt and k-seq in Theorem 4. T1 is the
time needed for k-seq to serve its initial group of k requests, ending at s1. The first
node on the path of opt after time T1 is y. A feasible path P starting at time T1 is from
s1 to y and then proceeds to the right. (It is possible for s1 and y to be collocated.)

§Note that when the graph is complete, tmax (tmin) is the maximum (minimum)
distance over all pairs of nodes. Otherwise, using the pre-processing described in the
footnote † in Section 2, we have that the distance between any two non-adjacent nodes is
the shortest distance between those nodes, and tmax (tmin) is the maximum (minimum)
distance over all of these distances.
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3.1 k-Sequence upper bound for large λ

We will now show that for sufficiently large constant λ, the k-seq algorithm is
a (1 + λ/k)-approximation, a better ratio than the result obtained in Theorem
4 for sufficiently large λ. However, Theorem 4 remains better when 2 +λ/k < k.
We note that when 1 + λ/k ≥ k, this upper bound of (1 + λ/k) matches the
lower bound which will be discussed in Section 4.

Theorem 5. For any instance I of TDARP,

|opt(I)| ≤ max{(1 + λ/k)|k-seq(I)|+ λ(k − 1)/k + 1, k|k-seq(I)|+ k}.

I.e., when 1 + λ/k ≥ k, we have |opt(I)| ≤ (1 + λ/k)|k-seq(I)| + max{λ(k −
1)/k + 1, k}, so k-seq is a (1 + λ/k)-approximation in this case.¶

Proof. Let m = |opt|, and n = |k-seq|. Suppose that m < kn + k. Then
|opt| < kn+k = k|k-seq|+k, giving our desired result. Thus, for the remainder
of the proof, we assume that m ≥ kn + k, and proceed to show that |opt| <
(1 + λ/k)|k-seq|+ λ(k − 1)/k + 1.

Let the opt path serve, in order, requests r1, r2, . . . , rm, whose respective
service times are y1, y2, . . . , ym. Let xj be the time taken by an empty drive
required between request rj−1 and request rj for 2 ≤ j ≤ m, and let x1 be the
time taken to get from the origin to request r1. Note that any xj may be 0.
Thus, the driveTime taken by the opt path is:

x1 + y1 + x2 + y2 + · · ·+ xm + ym ≤ T. (2)

Let rm+1, rm+2, . . . be some fixed arbitrary labeling of the requests not served
by opt. Now we consider the k-seq algorithm and denote the requests served
by k-seq as rα1

, . . . , rαn
. Denote by q the number of times that k-seq searches

for the fastest sequence of k requests to serve; q = dn/ke. Then n = k(q− 1) + ρ
for some 1 ≤ ρ ≤ k.

By Lemma 2 in the Appendix, we can find q − 1 disjoint subsequences of k
consecutive integers from {1, . . . ,m}, and a qth disjoint subsequence of ρ con-
secutive integers from {1, . . . ,m}, i.e. for i1 = 1 we have:

i1, . . . , i1 + k − 1, . . . , iq−1, . . . , iq−1 + k − 1, iq, . . . , iq + ρ− 1 where

{ij , ..., ij + k − 1} ∩ {α1, . . . , αk(j−1)} = ∅, for 2 ≤ j ≤ q − 1,

{ij , ..., ij + ρ− 1} ∩ {α1, . . . , αk(j−1)} = ∅, for j = q.

Since both k-seq and opt start at the same origin, the greedy nature of
k-seq ensures the time k-seq spends on its first set of k requests, including any
empty drives to those requests, is at most x1 + y1 + · · ·+ xk + yk. By Lemma 2
we know {ij , . . . , ij + k − 1} is disjoint from {α1, . . . , αk(j−1)}, so for the jth
set of k requests with 2 ≤ j ≤ q − 1, the path resulting from going to requests

¶Note that if 1 + λ/k ≥ k, then λ(k − 1)/k + 1 ≥ k.
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{rij , . . . , rij+k−1} is available and so by the greedy nature of k-seq, the time
spent by k-seq is at most tmax + yij + xij+1 + · · · + yij+k−1, since tmax is the
maximum time needed to get to request rij . And finally by the same reasoning
the time spent by k-seq on the last set of ρ requests, still including any drives
to those requests, is at most tmax + yiq + xiq+1 + · · ·+ yiq+ρ−1. Thus, the total
time spent by k-seq is at most

T0 :=(q − 1)tmax + x1 + y1 + · · ·+ xk + yk

+

q−1∑
j=2

(yij + xij+1 + · · ·+ yij+k−1) + yiq + xiq+1 + · · ·+ yiq+ρ−1. (3)

Now, let rJ be any request served by opt where J is not any of the indices
appearing in the right hand side of (3). If T0 + tmax + yJ ≤ T , then k-seq
could have served another request, a contradiction. Therefore, we must have
T0 + tmax + yJ > T . Combining this observation with (2), we have:

(q − 1)tmax + x1 + y1 + · · ·+ xk + yk +

q−1∑
j=2

(yij + xij+1 + · · ·+ yij+k−1) + yiq

+ xiq+1 + · · ·+ yiq+ρ−1 + tmax + yJ > x1 + y1 + · · ·+ xm + ym. (4)

By construction, in the left hand side of (4), the x terms all have distinct
indices, the y terms all have distinct indices, and these terms also appear on the
right hand side.

Let I be the set of these indices on the left hand side. So I ⊆ {1, . . . ,m}.
Then subtracting these terms from both sides of the equation yields qtmax >
xJ +

∑
{xj : j ∈ {1, . . . ,m}\I}+

∑
{yj : j ∈ {1, . . . ,m}\I}, so: qtmax >

∑
{yj :

j ∈ {1, . . . ,m}\I}. Since |I| = n + 1, there are m − n − 1 of the yj terms on
the right hand side. Since each yj ≥ tmin, we have qtmax > (m − n − 1)tmin.
Thus qλ > m − n − 1. Because q = dn/ke, then q ≤ (n + k − 1)/k. Then
m ≤ (n+ k − 1)λ/k + n+ 1 ≤ (1 + λ/k)n+ λ(k − 1)/k + 1 as desired. �

Note that for k = 1, k-seq is the polynomial time algorithm that repeatedly
finds and serves the quickest request. Theorem 5 (in this section) and Theorem 6
(in the next section) yield the following corollary regarding this algorithm.

Corollary 1. 1-seq (i.e., k-seq with k = 1) has approximation ratio 1 + λ,
which is tight for all λ (see Figure 2 for an illustration of the lower bound).

4 k-Sequence lower bound

We now present lower bounds on k-seq; specifically, the lower bound is 1 + λ
for k = 1, shrinking to 2 for k = λ, and shrinking further towards 9/7 for k > λ.
Note that Theorem 6 matches the upper bound of Theorem 5 when 1+λ/k ≥ k.

Theorem 6. The approximation ratio of k-seq for TDARP has lower bound
1 + λ/k.
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Fig. 2. The instance described in Theorem 6 when k = 1. Note that the graph is
complete, and any edge (u, v) that is not shown has distance equal to the minimum
of λ and the shortest-path distance along the edges shown between u and v. The bold
edges represent requests. k-seq serves requests along the top path while opt serves
along the bottom.

Proof. Consider an instance (see Figure 2 for the case of k = 1) where there are
two “paths” of interest, both a distance of λ away from the origin. Any edge
(u, v) that is not shown has distance equal to the minimum of λ and the shortest-
path distance along the edges shown between u and v. There is one long chain of
T requests, which is the path chosen by the optimal solution (the bottom path
in Fig. 2), and another “broken” chain (the top path in Fig. 2) that consists of
k sequential requests at a time with a distance of λ from the end of each chain
to any other request in the instance. (Generalizing Figure 2, for k > 1, these
requests occur in chains of length k instead of single requests.) Note this graph
satisfies the properties of a metric space.

The algorithm may choose to follow the path of the broken chain, serving
k requests at a time, but being forced to move a distance of λ between each
k-chain. In this manner, for every k requests served, the algorithm requires k+λ
units of time, while the optimal solution can serve k requests every k time units
(after the first λ time units). Thus the approximation ratio of k-seq is at least
1 + λ/k. �

We now show, however, that as k grows relative to λ the ratio of k-seq
improves but does not reach (or go below) 9/7.

Theorem 7. The approximation ratio of k-seq has lower bound no better than
9/7 for any k > λ.

Proof. Refer to Figure 3 with nodes o, a0, a1, . . . , aL, bk+λ+1, . . . , bL. The dis-
tances are: o is λ away from every node, dist(ai−1, ai) = 1 for all i = 1, . . . , L,
and dist(ai, bi) = dist(bi, ai) = 1 for all i = K + λ+ 1, ..., L.

Consider the edges shown in Figure 3 (Top) as forming a connected spanning
subgraph G′. Define the distance between any two nodes whose distance is not
yet defined as the length of the shortest path within G′ between the two nodes,
capping the distance at λ; that is, for any i 6= j, dist(ai, aj) = min{λ, |i − j|}
and dist(ai, bj) = min{λ, |i − j| + 1}. A distance defined this way satisfies the
properties of a metric space.
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Fig. 3. Top: An instance where opt serves no fewer than 9/7 the number of requests
served by k-seq. Bottom: A depiction of the top instance illustrating the path taken
by k-seq. Bold edges indicate requests served. k-seq starts at o, serves the k requests
from aL−k to aL, and then spends time moving to aL−2k to serve the next collection
of k requests, continuing similarly until the time limit. In both figures the graph is
complete but only relevant edges are shown.

The requests are: (ai−1, i) for i = 1, . . . , L (the “spine”), (ai, bi) and (bi, ai)
for i = k+λ+1, k+λ+2, . . . , L (a “loop”). Note there are no loops for i ≤ k+λ.

opt serves all requests via the path o, a0, a1, a2, . . . , ak+λ, ak+λ+1, bk+λ+1,
ak+λ+1, ak+λ+2, bk+λ+2, ..., aL. This serves L + 2(L − k − λ) = 3L − 2λ − 2k
requests in time λ+3L−2λ−2k = 3L−λ−2k. Meanwhile, k-seq will serve the
path that begins with the segment o, aL−k, aL−k+1, . . . , aL, followed by an empty
drive to the segment aL−2k, aL−2k+1, . . . , aL−k, followed by an empty drive, and
so on, until the final segment of k requests a0, a1, . . . , ak.

Note that because 2k > λ, then dist(aL, aL−2k) = λ. So the entire k-seq
path then takes total time (λ+ k)L/k since there are L/k segments, and k-seq
initially serves L requests during these (λ + k)L/k units of time. There is time
remaining, namely T ′ = 3L− λ− 2k− (λ+ k)L/k = (3− (λ+ k)/k)L− λ− 2k.
Since k > λ/2, we have (λ+k)/k < 3, so T ′ is positive for large enough L. There
are now disconnected two-cycles (ai, bi), (bi, ai) for i = λ + k + 1, ..., L left for
k-seq. With time T ′ left, k-seq is now at ak. Note that these are all distance λ
away from ak. There are two cases based on the parity of k.

Case 1: k is even. Moving to the group (i.e. a sequence of k requests consisting
of k/2 consecutive two-cycles) {(ai, bi), (bi, ai) for i = j, . . . , j+ k/2− 1} for any
j with k + λ+ 1 ≤ j ≤ L− k/2 + 1 serves k requests in time k + λ+ k/2− 1 =
λ + 3k/2 − 1 because of the required empty drive of time λ to get to the first
request and the (k/2− 1) empty drives between the k/2 two-cycles. Then k-seq
from ak would move to this group with j = L− k/2 + 1, followed by this group
with j = L − k + 1, and so on, subtracting k/2 from j each time. Thus k-seq
serves T ′k/(λ+ 3k/2− 1) additional requests in the remaining time T ′; note for
simplicity we can choose L so that T ′k is evenly divisible by (λ+ 3k/2− 1).
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Case 2: k is odd. The behavior of k-seq is similar to the even k case except
that in each iteration, k-seq serves (k − 1)/2 two-cycles and one additional
request. Specifically, from ak, k-seq would move to the group of k requests

{(aj , bj),(bj , aj), (aj+1, bj+1), (bj+1, aj+1), . . . , (aj+(k−1)/2−1, bj+(k−1)/2−1),

(bj+(k−1)/2−1, aj+(k−1)/2−1), (aj+(k−1)/2, bj+(k−1)/2)}

where we here set j = L− (k− 1)/2. This serves k requests in time λ+ k+ (k−
1)/2 = λ+ 3k/2− 1/2. But the next group of k requests would be (still setting
j = L− (k − 1)/2, and continuing from bj+(k−1)/2):

{(bj−(k−1)/2, aj−(k−1)/2),(aj−(k−1)/2+1, bj−(k−1)/2+1), (bj−(k−1)/2+1, aj−(k−1)/2+1),

(aj−(k−1)/2+2, bj−(k−1)/2+2), . . . , (bj−1, aj−1)}.

This group serves k requests in time k + λ + (k − 1)/2 − 1 = λ + 3k/2 − 3/2.
Together these two sequences serves 2k requests in time 2λ+3k−2. Then k-seq
repeats these two sequences with j decreasing by k each time until time runs
out. Thus k-seq serves T ′2k/(2λ+ 3k− 2) additional requests in the remaining
time T ′. Note this is identical to the case of even k.

In both cases, k-seq serves a total of L+T ′·k
(λ+3k/2−1) = (7kL−2L−2kλ−4k2)

(3k+2λ−2) re-

quests. Then |opt|
|k-seq| is (3L−2λ−2k)(3k+2λ−2)

7kL−2L−2kλ−4k2 .As L grows, this approaches 3(3k+2λ−2)
(7k−2) .

Note that because λ ≥ 1 and k ≥ 1, this ratio is ≥ 9/7; thus 9/7 is a lower bound.
�

Note that when k ≤ λ, Theorem 6 gives a lower bound of 1 + λ/k ≥ 2; so we
have a lower bound of 9/7 for any k, λ.

5 Final remarks

Observe that if we let N denote the maximum number of requests that can
be served within time tmax, then it is possible to show that our upper bound
theorems above hold with λ replaced by N + 1 and the lower bound theorems
hold with λ replaced by N . Note that N ≤ λ; the hypothetically modified
upper bound theorems would be improvements in the case where N + 1 < λ.
Additionally, we could have defined tmin as the minimum request service time
when there is at least one request, leaving tmax as the maximum edge weight,
and the theorems above would still hold.

It remains open whether our lower bound of 9/7 from Theorem 7 is tight
when k > λ. Another open problem is to close the gap between the upper and
lower bounds in the approximation ratio when k ≤ λ ≤ k(k − 1).
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6 Appendix

6.1 Lower Bound Instance from Proof in Section 2.2

The following theorem directly adapts the lower bound instance in [7] for online
sbp to our work in the offline setting. The intuition behind the bound carrying
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over lies in the observation that in the online instance no requests were released
after time 0.

Theorem 8. sbp serves no more than opt/4 requests.

Proof. Consider an instance (S, T, o). For some even f , there are T requests and
each request requires (T/(2f)) + 1 time to serve. opt serves T

(T/(2f))+1 requests.

sbp serves during every odd time segment, and due to the time required for each
request, can serve only one request per time segment. So in total sbp can serve
at most f/2 requests. We have:

opt(S, T, o)

sbp(S, T, o)
≥

(
T

(T/(2f))+1

)
f/2

≥ 4T

T + 2f
(5)

As T →∞, the above expression approaches 4.

6.2 Proof and Figure for Section 2.1.1

We now show that no polynomial-time algorithm can be guaranteed to serve
the optimal number of requests, even when the time limit for the algorithm is
augmented by any constant factor c ≥ 1.

Fig. 4. An example instance G of the directed Hamiltonian path problem where n = 5
(left), and the graph G′ of the corresponding instance for TDARP where T = 2n + 1
(right). Four types of edges have distance 1: (1) all edges (v′, v′′), (2) for any (u, v) ∈ G,
the edge (u′′, v′), (3) for all nodes v′ in G′, the edge (o, v′), and (4) for all nodes v′′

in G′, the edge (v′′, t). All other edges to make the graph complete (not shown) have
distance c(2n+ 1) + 1 for some c ≥ 1.
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Proof. We will show that a polynomial-time c-time-approximation to TDARP
yields a polynomial-time decider for the directed Hamiltonian path problem.
Portions of this proof are inspired by the NP-hardness proof in [1] where the
problem of TDARP was studied on the uniform metric space.

Given a directed Hamiltonian path problem input G = (V,E) where n = |V |,
we build an instance I for TDARP as follows. First, construct a complete graph
G′ with 2n+ 2 nodes (see Figure 4; while G′ is a complete graph, we show only
the edges of interest, omitting those with distance c(2n+ 1) + 1): one node will
be the server origin o, one will be a designated “sink” node t, and the other 2n
nodes are as follows. For each node v ∈ V , create a node v′ and a node v′′ in
G′. Four types of edges have distance 1 in G′: (1) all edges (v′, v′′), (2) for any
(u, v) ∈ G, the edge (u′′, v′), (3) for all nodes v′ in G′, the edge (o, v′), and (4) for
all nodes v′′ in G′ the edge (v′′, t) . All other edges have distance c(2n+1)+1 for
some c ≥ 1. To construct the set of requests S, create a TDARP request in G′

from node v′ to node v′′ for each v ∈ V , which we will refer to as a node-request.
Further, for each edge (u, v) ∈ E, create a TDARP request from node u′′ to
node v′ in G′, which we will refer to as an edge-request. Additionally, for each
v ∈ V , create an edge-request from v′′ to the designated sink node t in G′. Let
I = (G′, S, T = 2n+ 1).

By way of contradiction, we assume there is a c-time-approximation for
TDARP called alg and let I ′ = (G′, S, cT = c(2n + 1)) be an instance of
TDARP where G′ and S are as described above. We claim alg can be used as
a polynomial-time decider for the Hamiltonian path problem; specifically, G has
a Hamiltonian path if and only if alg(I ′) ≥ 2n

Suppose alg(I ′) ≥ 2n. Consider a sequence of 2n requests in G′ that takes
time at most c(2n+ 1). Note that any such sequence may not contain any of the
edges with distance c(2n+ 1) + 1. Further note that by construction of G′, any
such sequence of TDARP requests must alternate between node-requests and
edge-requests, where any edge to the sink is counted as an edge-request (and
must be a terminal request). Since destinations in G′ can be partitioned into the
sink, single-primed nodes, and double-primed nodes, we can thus analyze the
three possibilities for the destination of the final TDARP request.

If either the sink or a single-primed node is the destination for the final
TDARP request, the TDARP sequence must end with an edge-request. The
alternating structure ensures the TDARP sequence begins with a node-request,
and contains exactly n node-requests and n edge-requests. If a double-primed
node is the destination for the final TDARP request, the TDARP sequence must
end with a node request. The alternating structure ensures the TDARP sequence
begins with an edge-request, and contains exactly n edge-requests and exactly
n node requests. Thus, the TDARP sequence always contains n node requests.
This ensures that the length n path in the original graph G includes all n nodes
in the original graph G, and thus the existence of a Hamiltonian path. This
shows alg(I ′) ≥ 2n implies the existence of a Hamiltonian path in G.

For the other direction of the proof, we show that if there is a Hamiltonian
path in G then alg(I ′) ≥ 2n. Let p = (v1, v2, . . . , vn) be a Hamiltonian path
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in G. Construct the sequence of 2n TDARP requests in G′ by the node request
from v′1 to v′′1 , the edge-request from v′′1 to v′2, the node request from v′2 to v′′2 ,
the edge-request from v′′2 to v′3, and so forth, through the edge-request from v′′n−1
to v′n, the node request from v′n to v′′n, and finally the edge-request from v′′n to
the designated sink t. The entire sequence takes time 2n + 1, so opt(I) = 2n.
By definition of a c-time-approximation, this implies that alg(I ′) ≥ 2n. �

6.3 Definitions and Proof for Section 2.1.2

Let G1 and G2 be complete subgraphs of a fixed complete graph with requests.
We say G1 and G1 are request-isomorphic if there is a correspondence of nodes
that preserves edge weights and request status.

We define an inductive stateless greedy algorithm on an offline DARP problem
to have the following properties.

1. Inductive. The algorithm may make calculations and decisions only when it
(the server) is at a node. A decision is a chosen path emanating from the
node where the server is; the algorithm must complete the first drive on
the chosen path, but may choose a different chosen path at any subsequent
node on the path. Note that at the start of the algorithm and whenever the
algorithm reaches the end of a chosen path, the algorithm must make a new
decision.

2. Stateless. At each node the algorithm visits, the algorithm does not remem-
ber anything from previous calculations other than the current chosen path.

3. Greedy. The algorithm makes decisions based on comparing possible paths
emanating from its current location. That is, the algorithm computes an
objective function based on the nodes of each candidate path and any nodes
from the current chosen path, but no other nodes. The algorithm chooses a
path P0 that optimizes this objective function. Note that if two paths Q and
Q′ have the property that Q ∪ P0 and Q′ ∪ P0 are request-isomorphic via
an isomorphism that fixes the chosen path P0, then the objective function
cannot distinguish between Q and Q′.

Theorem 2. Let M be a constant and let alg be a deterministic inductive
stateless greedy algorithm such that the algorithm considers only candidate paths
with at most M edges. If λ is not bounded, then alg has an unbounded approx-
imation ratio.

Proof. Consider the following instance. Without loss of generality let M be an
integer (replacing M by dMe if needed). We will construct an instance with inte-
ger edge weights where the minimum edge weight will be 1 and hence maximum
edge weight will be λ. Let T = λ+n, where n is a positive integer. The instance
depends on integers M,n, λ.

Consider all possible request-isomorphism classes of nonempty complete graph
instances with M nodes or fewer, for which edges can have only integer value
weights from 1 to λ and there are M or fewer requests. Clearly there are only a
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finite number of such isomorphism classes. Create a collection Φ of disjoint com-
plete graphs such that there are 2M + T + 1 of each isomorphism class. Define
the distance between any pair of nodes from two different elements of Φ to be λ.

The optimal schedule opt will serve P , a chain of n requests of distance 1
each, disjoint from all nodes in Φ. Define the distance from any node in P to
any node in Φ to be λ.

Let o be the origin, a node that is distance λ from every node in P or in Φ.
This completes the definition of our instance. (It is a metric space if we restrict
Φ to contain only metric spaces.)

We claim that alg cannot be guaranteed to ever visit P . We prove the claim
by induction on how many nodes alg has visited so far. Since alg starts at o,
the base case holds. For the induction step, suppose alg is at a node b not on P
and alg has not visited any nodes of P so far and that its current chosen path
does not include any nodes in P . If alg does not make a new decision here, then
alg will continue to not have visited P when it drives to the next node and we
are done. So suppose alg makes a new decision here.

Let P0 be the current chosen path that includes b (so if we are at the start
of the algorithm, just let P0 = {o}); alg (at b) could be at the last node of
P0. Let Q be a path of at most M edges emanating from b that optimizes alg’s
objective function. We now show that if Q has nodes that are in P , then there
exists a path Q′ emanating from b that has the same objective function value
but Q′ has no nodes in P . Let Q be the path A1, Q1, A2, Q2, ..., Qr, Ar+1 where
Ai’s are sequence of nodes not in P and Qi’s are sequence of nodes in P . It is
possible that nodes may be repeated, and it is possible that some Ai’s and Qi’s
consist of single nodes; they are nonempty except for possibly Ar+1. Note that
the distance going from an Ai to a Qi and from a Qi to an Ai+1 is λ.

Consider the complete subgraph spanned by the set of nodes Q̂ = Q1 ∪ · · · ∪
Qr. Because Q has at most M+1 nodes and one of them is b, then there are M or
fewer nodes in Q̂. Also, Q̂ has at most M − 1 ≤M requests. Then the complete
subgraph spanned by Q̂ is request-isomorphic to 2M + T + 1 of the graphs in
the collection Φ. Because alg could have visited at most T − 1 of these in time
T and P0 has at most M + 1 nodes and there are at most M nodes in the union
of Ai’s, then there is at least one element Q̂′ from Φ that is request-isomorphic
to Q̂ with the property that Q̂′ has no nodes visited by alg so far and no nodes
in P0 or the Ai’s. Note that every node in Q̂′ is distance λ from every node in
P0 and the Ai’s and that the requests in Q̂′ are not yet served. Then each Qi
has a corresponding Q′i ⊆ Q̂′.

Consider the path Q′ = A1, Q
′
1, A2.Q

′
2, ..., Q

′
r, Ar+1. Because the distance

from every node in Qi or Q′i to every node in Aj and P0 is λ, then Q ∪ P0 is
request-isomorphic to Q′ ∪P0. Thus the objective function must evaluate to the
same value on Q′ as Q. Thus Q′ also optimizes the objective function. Then alg
cannot guarantee that it does not choose Q′ as its chosen path. This finishes the
proof of the claim that alg cannot be guaranteed to ever touch P .

Since alg is never on P , then alg must alternate between empty drives
of distance λ and sequences of drives within each graph from the collection Φ.
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Since each graph from Φ has at most M requests, then alg alternates between
an empty drive and a sequence of at most M requests. Let E denote the number
of such empty drives. Since there are no requests at the origin, and alg can
serve at most M requests before being forced to go to another element of Φ, we
have |ALG| ≤ EM . Thus, T = Eλ+ |alg| ≥ (|alg|/M)λ+ |alg|, which implies
alg can serve at most TM/(λ+M) = (n+ λ)M/(λ+M) requests.

Since opt serves n requests, then

|opt|
|alg|

≥ n(λ+M)

(n+ λ)M
.

Note the limit as n→∞ of the expression on the right hand side is (λ+M)/M .
By taking n sufficiently large, we can say

|opt|
|alg|

≥ λ+M

M
− 1.

This ratio is unbounded as λ increases.

6.4 Proofs for Theorem 5 in Section 5

The following lemmas are used for the proof of Theorem 5.

Lemma 1. Suppose we have d disjoint ordered sequences, some which may be
empty, consisting of b elements in totality and are given c elements, some of
which may not occur in the d sequences. If for some h, b ≥ ch + dh − d + 1,
then there exists a subsequence of h consecutive elements in one of the sequences
which does not include the indicated c elements.

Proof. Note that if one or more of the c elements is not in any of the d ordered
sequences, then we would just ignore them and the resulting set of elements to
avoid would be smaller so the inequality in the lemma would still be satisfied.
So for simplicity, in this proof we assume the c elements to be avoided are inside
the set of b elements.

First we prove the case of d = 1. The c elements partition the one given
sequence into (c + 1) subsequences (some possibly empty). If, by way of con-
tradiction, each of these subsequences has length h − 1 or less, then the total
number of elements is at most (c + 1)(h − 1) + c = ch + h − 1, a contradiction
since we are given b ≥ ch+ h, completing the proof for the case of d = 1.

Now we prove the general case. Let the d subsequences be B1, . . . , Bd and
suppose the c elements are distributed as sets C1, . . . , Cd inside these. Suppose
by way of contradiction that |Bj | ≤ |Cj |h+h−1 for each j. Then summing these
inequalities yields

b =

d∑
j=1

|Bj | ≤
d∑
j=1

(|Cj |h+ h− 1) = ch+ d(h− 1) < ch+ dh− d+ 1,

a contradiction. Hence |Bj | ≥ |Cj |h + h for some j and the first case of d = 1
implies this Bj contains the desired subsequence of h consecutive elements. �
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Lemma 2. Let m ≥ nk+ k, q = dn/ke, and n = k(q− 1) + ρ. Note this implies
1 ≤ ρ ≤ k. Suppose we have a sequence α1, . . . , αn of distinct integers. We can
find q− 1 disjoint subsequences of k consecutive integers from {1, . . . ,m}, and a
qth disjoint subsequence of ρ consecutive integers from {1, . . . ,m}, i.e. we have:

i1, . . . , i1 + k − 1, . . . , iq−1, . . . , iq−1 + k − 1, iq, . . . , iq + ρ− 1 (6)

such that i1 = 1 and we have

{ij , ..., ij + k − 1} ∩ {α1, . . . , αk(j−1)} = ∅, for 2 ≤ j ≤ q − 1, (7)

{ij , ..., ij + ρ− 1} ∩ {α1, . . . , αk(j−1)} = ∅, for j = q. (8)

Proof. Set i1 = 1. We now show how we can choose iq, then iq−1, and so forth,
down to i2. We need to enforce that the i1, . . . , in ∈ {1, . . . ,m} are distinct and
that the conclusion ((7) and (8)) of the lemma are true. We start by choosing iq
so that the length-ρ sequence {iq, . . . , iq + ρ− 1} avoids {α1, . . . , αk(q−1)} and
{i1, . . . , ik} = {1, . . . , k}. That is, we want to choose ρ consecutive integers from
{k + 1, . . . ,m} (which has size m− k) while avoiding those in {α1, . . . , αk(q−1)}
(which has size k(q − 1)). We apply Lemma 1 with d = 1 and b = m − k and
c = (q−1)k = n−ρ. Since m ≥ kn+k, we have that m−k ≥ kn ≥ kn−ρ(ρ−1) ≥
ρn− ρ2 + ρ = ρ(n− ρ) + ρ, ensuring that b ≥ ρc+ ρ, and thus that there is a set
of ρ consecutive integers in {k + 1, . . . ,m} such that (7) is satisfied.

Having chosen an acceptable iq, we now proceed to choose an iq−1 such that

{iq−1, . . . , iq−1 + k − 1} ⊆ {k + 1, . . . ,m}\{iq, . . . , iq + ρ− 1}

avoids {α1, . . . , αk(q−2)}. Note that since {iq, . . . , iq + ρ − 1} is a sequence of
consecutive integers, {k+1, . . . ,m}\{iq, . . . , iq+ρ−1} consists of two sequences
(one possibly empty) of consecutive numbers. Thus we can apply Lemma 1 with
d = 2, b = m−k−ρ, c = k(q−2) and h = k. We calculate that ch+dh−d+1 =
k2(q−2)+2k−2+1 = k2q−2k2+2k−1 = k2q−(k−1)2−k2 and b = m−k−ρ ≥
nk+k−k−ρ = (k(q−1)+ρ)k−ρ = k2q−k2+ρ(k−1). Since b ≥ k2q−k2+ρ(k−1)
and ρ(k− 1) ≥ 0 ≥ −(k− 1)2, we have b ≥ k2q− (k− 1)2− k2 = ch+ dh− d+ 1
and so by Lemma 1, there exists an iq−1 that we desire.

We similarly obtain iq−2, . . . , i2 and the corresponding collections of consec-
utive requests. In each step, d increases by 1, b decreases by k and c decreases
by k, so that that for finding iq−j (where 1 ≤ j ≤ q − 2), we have d = j + 1,
b = m−ρ−jk, c = k(q−j−1). We just need to verify the hypothesis of Lemma 1
to finish this proof. We have ch+dh−d+1 = k2(q−j−1)+(j+1)k−(j+1)+1 =
k2q+j(−k2+k−1)−k2+k = k2q−j(k−1)2−jk−k2+k whereas b = m−ρ−jk ≥
nk + k − ρ− jk = (k(q − 1) + ρ)k − ρ− jk + k = k2q − k2 + ρ(k − 1)− jk + k.
It is now clear that b ≥ ch+ dh− d+ 1, and the proof is complete. �


