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Abstract
We study a variation of the Online-Dial-a-Ride Problem where each request comes with not only
a source, destination and release time, but also has an associated revenue. The server’s goal
is to maximize its total revenue within a given time limit, T . We show that the competitive
ratio is unbounded for any deterministic online algorithm for the problem. We then provide a
3-competitive algorithm for the problem in a uniform metric space and a 6-competitive algorithm
for the general case of weighted graphs (under reasonable assumptions about the input instance).
We conclude with an experimental evaluation of our algorithm in simulated settings inspired by
real-world Dial-a-Ride data. Experimental results show that our algorithm performs well when
compared to an offline version of the algorithm and a greedy algorithm.
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1 Introduction

In the On-Line Dial-a-Ride Problem (OLDARP), a server travels in some metric space to
serve requests for rides. The server has a capacity that specifies the maximum number of
requests it can serve at any time. The server starts at a designated location of the space, the
origin, and moves along the space to serve requests. Requests arrive dynamically and each
request specifies a source, which is the pick-up (or start) location of the ride, a destination,
which is the delivery (or end) location, and the release time of the request, which is the
earliest time the request may be served. For each request, the server must decide whether to
serve the request and at what time, with the goal of meeting some optimality criterion. In
many variants preemption is not allowed, so if the server begins to serve a request, it must
do so until completion. On-Line Dial-a-Ride Problems have many practical applications in

© Ananya D. Christman, Christine Chung, Nicholas Jaczko, Marina Milan, Anna Vasilchenko, and
Scott Westvold;
licensed under Creative Commons License CC-BY

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017).
Editors: Gianlorenzo D’Angelo and Twan Dollevoet; Article No. 1; pp. 1:1–1:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


1:2 Revenue Maximization in Online Dial-A-Ride

settings where a vehicle is dispatched to serve requests involving pick-up and delivery of
people or goods. Important examples include ambulance routing, transportation for the
elderly and disabled, taxi services, and courier services.

We study a variation of the Online-Dial-a-Ride Problem where in addition to the source,
destination and release time, each request also has a priority and there is a time limit within
which requests must be served. The server has unit capacity and the goal for the server
is to serve requests within the time limit so as to maximize the total priority. A request’s
priority may simply represent the importance of serving the request in settings such as
courier services. In more time-sensitive settings such as ambulance routing, the priority may
represent the urgency of a request. In profit-based settings, such as taxi and ride-sharing
services, a request’s priority may represent the revenue earned from serving the request. For
the remainder of this paper, we will refer to the priority as “revenue,” and to this variant of
the problem as ROLDARP.

1.1 Related Work
The Online Dial-a-Ride problem was introduced by Feuerstein and Stougie [8] and several
variations of the problem have been studied since. For a comprehensive survey on these and
many other problems in the general area of vehicle routing see [11]. The authors of [8] studied
the problem for two different objectives. One was to minimize the time to serve all requests
and return to the origin (also known as completion time); the other was to minimize the
average completion time of the requests (also known as latency). For minimizing completion
time, they showed that any deterministic algorithm must have competitive ratio of at least 2
regardless of the server capacity. They presented algorithms for the cases of finite and infinite
capacity with competitive ratios of 2.5 and 2, respectively. For minimizing latency, they
proved that any algorithm must have a competitive ratio of at least 3. They also presented a
15-competitive algorithm for the infinite capacity problem on the real line.

Ascheuer et al. [1] studied minimizing total completion time for OLDARP with multiple
servers and capacity constraints and presented a 2-competitive algorithm for this problem.
Jaillet and Wagner [10] considered a version of OLDARP where each request consists of one
or more locations, and precedence and capacity requirements for the locations. To serve a
request the server must visit each location, while satisfying the requirements. The authors
provided a non-polynomial 2-competitive algorithm for minimizing completion time.

The Online Traveling Salesperson Problem (OLTSP), introduced by Ausiello et al. [2], is
a special case of OLDARP where for each request the source and destination are the same
location. Krumke [13] studied both OLDARP and OLTSP for the uniform metric space.
Their objective was to minimize the maximum flow time, that is the difference between a
request’s release and service times. They proved that no competitive algorithm exists for
OLDARP and gave a 2-competitive algorithm to solve OLTSP.

Within the last five years many heuristic approaches have emerged as means for tackling
practical variations of Dial-a-Ride problems; for example, see [15, 3, 12, 14, 9]. On the
other hand, provably competitive results on OLDARP have been sparse within the last five
years; we are unaware of any such work, other than [4]. For Revenue-maximizing OLDARP
(ROLDARP), [4] showed that no deterministic online algorithm can be competitive on graphs
with non-uniform edge weights. They therefore focused on the uniform metric and presented
a greedy 2-competitive algorithm for this problem. They also considered two variations of
this problem: (1) the input graph is complete bipartite, and (2) there is a single node that is
the source for every request, and presented a 1-competitive algorithm (optimal to within an
additive factor) for the former and an optimal algorithm for the latter [4].
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1.2 Our Results
In this work we begin by proving that the offline version of ROLDARP is NP-hard. We then
present a greedy algorithm called BestPath (bp) for ROLDARP in the uniform metric.
Although a 2-competitive algorithm has already been found [4], we show that a “smarter”
algorithm like bp is in fact only 3-competitive. The idea of the bp algorithm also forms the
basis for our main result: the algorithm we present in Section 4, Segmented Best Path
(sbp), which we show is 6-competitive for ROLDARP on weighted graphs, provided that
the edge weights are bounded by T/f where T is the time limit and 1 < f < T , and that
the revenue earned by the optimal offline solution in the last 2T/f time units is bounded
by a constant. We show that the competitive ratio is unbounded for any deterministic
online algorithm for the problem, unless we assume edge weights are bounded and discount
the revenue earned by opt in the last T/f time units. We also give a lowerbound of 4
on the competitive ratio of sbp. As far as we know, this is the first work that presents a
competitive algorithm for ROLDARP on weighted graphs. Finally, in Section 5, we present
some experimental results for the sbp algorithm in simulated settings inspired by real-world
Dial-a-Ride data. Our experimental results show that sbp performs well when compared to
an offline version of sbp and a simple greedy algorithm.

2 Preliminaries

Formally, we define the ROLDARP problem as follows. The input is an undirected complete
graph G = (V,E) where V is the set of vertices (or nodes) and E = {(u, v) : u, v ∈ V, u 6= v}
is the set of edges. For every edge (u, v) ∈ E, there is a weight wu,v > 0. (We note that
in fact any simple, undirected, connected, weighted graph is allowed as input, with the
simple pre-processing step of adding an edge wherever one is not present whose weight is
the length of the shortest path between its two endpoints. We further note that the input
can be regarded as a metric space if the weights on the edges are expected to satisfy the
triangle-inequality.) One node in the graph, o, is designated as the origin and is where the
server is initially located (i.e. at time 0). The input also includes a time limit T and a
sequence of requests, σ, that are dynamically issued to the server.

Each request is of the form (s, d, t, p) where s is the source node, d is the destination, t is
the time the request is released, and p is the revenue (or priority) earned by the server for
serving the request. The server does not know about a request until its release time t. To
serve a request, the server must move from its current location x to s, then from s to d. The
total time for serving the request is equal to the length of the path from x to d. We assume
the earliest time a request may be released is at t = 0.

For each request, the server must decide whether to serve the request and if so, at what
time. A request may not be served earlier than its release time and at most one request
may be served at any given time. Once the server starts serving a request, it must serve the
request until completion (i.e. preemption is not allowed). The goal for the server is to serve
requests within the time limit so as to maximize the total earned revenue.

We use R-DARP to refer to the offline version of ROLDARP, which knows all requests
from the start, at time 0.

I Theorem 1. R-DARP is NP-hard.

Proof. R-DARP-D, the decision version of R-DARP, outputs YES on an input instance if
and only if there is a set of requests that can be served to yield a revenue that is greater
than or equal to a given value k.

ATMOS 2017



1:4 Revenue Maximization in Online Dial-A-Ride

We proceed by reducing the Knapsack problem to R-DARP-D. The Knapsack problem is
defined as follows: We are given a set of items S, where item i ∈ S has a positive integer
weight wi and a positive integer value vi, and a knapsack weight limit W and some value
c. We must determine whether there is a subset of S that has total weight at most W and
value at least c.

From an instance of 01-Knapsack we build an instance of R-DARP-D as follows. Create
an empty graph G. For each item i ∈ S, we will make a request ri with a release time of 0
and an arbitrary source si and destination di that have not been used by another request.
Let the revenue pi = vi and add si and di to G as vertices with an undirected edge of weight
wi between them.

After we have created a request as above for each item in S, we add one more vertex, o,
to serve as the origin for the server. We then add an edge of weight 1

n between any pair of
vertices that does not yet have an edge between them. We set T = W + 1 and k = c.

If there is a feasible set of requests with total revenue at least k, serving the set of requests
requires at least one empty move (because no two requests share an endpoint and none
start at the origin). So, the empty moves will take up at least 1

n time units. The lengths
of the edges that represent requests are all positive integers, so the total time to serve the
requests (not including the time to move between requests) is at most T −1 time units. Since
W = T − 1 and the lengths of the requests were determined by the weights of the items in S,
the requests correspond to a set of items S′ with total weight at most W . The revenues of
the requests were determined by the values of the items in S. Thus, the items in S′ have
total value at least c = k.

If there is a subset S′ of S whose items have total value at least c and a total weight at
most W , then it will take at most W = T −1 time units to serve the requests that correspond
to those items, not including the time to move from one request to another. Each move
step will take at most 1/n and there will be at most n of these steps, so the total amount
of time required to move will be no more than 1. Therefore, all of the requests can be
fulfilled in T time units or less. The revenue yielded by each request is equal to the value of
a corresponding item in S′, so the total revenue will be at least k = c. J

We let opt denote an optimal offline algorithm, as in, an algorithm that given any
sequence of requests will serve the requests that return the maximum possible revenue for
that input. Given an input graph G, a sequence σ = r1, . . . rm of requests and an algorithm
alg, we denote alg(G, σ) as the total revenue earned by alg from σ on G. We say that on
is γ-competitive if there exists γ ≥ 1, b ≥ 0 such that for all σ:

opt(G, σ) ≤ γ · on(G, σ) + b . (1)

In [4] it was shown that no deterministic algorithm can be competitive when edge weights
are non-uniform and when revenues can take on any arbitrarily large value. In particular,
it was shown that in Equation 1, if b is set to the last revenue earned by opt, plast, then
γ · on(G, σ) + b < opt(G, σ) for any γ ≥ 1. We now show that the non-competitiveness is
due to arbitrarily large edge weights alone. In other words, if edge weights may be arbitrarily
large, then regardless of revenue values, no deterministic algorithm can be competitive.

For the remainder of this work, we use the terminology “algorithm A serves (or has
served) request r at time t” to indicate that A begins serving request r with source s and
destination d at time t and completes serving r at time t+ ws,d.

I Lemma 2. There is no deterministic algorithm for ROLDARP that is γ-competitive, for
any γ ≥ 1.
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Proof. The adversary will release requests in such a way that regardless of the behavior of
the online algorithm, the optimal offline solution will earn more than γ times the revenue
earned by any online algorithm, for any value of γ ≥ 1. The instance will begin with two
requests, and if the online algorithm chooses to serve either one, the adversary will release a
large number of requests the online algorithm is unable to serve.

Let G denote a complete graph with three nodes s, x, and y, where s is the origin,
ws,x = c where c = 2γ + 3, with γ ≥ 1, ws,y = 1 and wx,y > c, let T ≥ 2c denote the time
limit. The adversary will release two requests: r1 = (s, x, T − 2c, p) and r2 = (x, s, T − c, p),
with p > 0. There are two cases for the online algorithm, on:

Case 1: on serves neither of these requests. Since there is enough time for opt to serve
both requests, opt(G, σ) = 2p while on(G, σ) = 0. For b = plast = p we have 0γ + p < 2p
for any γ ≥ 1 and p > 0, so on is not competitive.

Case 2: on serves at least one of these requests. Suppose on starts serving a request at
time t. Then the adversary will release c requests where c/2 of the requests are (s, y, t+ 1, p)
and the other c/2 are (y, s, t+ 1, p).

We will now show that on will not have enough time to serve any of these requests
but opt will serve all of them and earn revenue opt(G, σ) such that for any γ ≥ 1,
γ · on(G, σ) + plast < opt(G, σ). There are two sub-cases:
1. on serves r1 (and possibly r2). The earliest on may serve any of r1 and r2 is at T − 2c

and in particular, it may serve only r1 at this time. It will complete r1 no sooner than
time T − c. To serve any of the new requests, it must move to either s or y from x. It
will arrive at either s or y no sooner than T and therefore will not have enough time to
complete any of these requests.

2. on serves only r2. The earliest on may serve r2 is at T − c and it will complete it no
sooner than time T and will therefore not have enough time to complete any of the new
requests.

In both cases on earns at most 2p.
Note that the latest that on may serve either r1 or r2 is at T − c (so t ≤ T − c). Therefore

t+ 1 ≤ T − c+ 1 and for every time unit from t+ 1 ≤ T − c+ 1 to T , opt earns revenue p,
so opt earns total revenue at least (T − (T − c+ 1))p = (c− 1)p, so opt(G, σ) > (c− 2)p.
For c = 2γ + 3 we have:

opt(G, σ) > (2γ + 1)p = 2γp+ p ≥ γ · on(G, σ) + p = γ · on(G, σ) + plast (2)

for all γ ≥ 1 and plast > 0. J

Since we have now established that no deterministic online algorithm can be competitive
if edge weights are not bounded, we assume for the remainder of this work that all edge
weights are no more than T/f for some 1 < f < T .

However, even with this restriction we find that no deterministic online algorithm can
serve the requests served by opt during the last T/f time units. Hence the competitive
ratio of any algorithm is still unbounded unless b is set to the revenue earned by opt in last
T/f time units.

I Lemma 3. If the maximum edge weight is T/f for some 1 < f < T , no deterministic
online algorithm can serve the requests served by opt during the last T/f time units.

Proof. Let on denote a deterministic online algorithm. There are two cases:

ATMOS 2017
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Algorithm 1: Algorithm Best Path (BP). Input is complete unit weight graph
G and time limit T .

1: for t = 1 to T do {at each unit of time, do the following}
2: if a request was served at time t− 1 then
3: define P to be the currently available request-path with the highest score.
4: if P does not start at the current server location then
5: move server to the start of P .
6: else
7: serve the first request on the path P
8: end if
9: else {no request was served at time t− 1}

10: serve the first request of P {which was determined in iteration t− 1}
11: end if
12: end for

1. At time T − (T/f), on is at (or moving toward) a node s such that there is an edge (s, x)
where ws,x = T/f . Then the adversary releases the request (x, s, T − (T/f), p) for some
p > 0. on will not be able to serve the request since an online server will arrive at x no
sooner than time T , however an optimal algorithm could serve the request.

2. At time T − (T/f), on is at (or moving toward) a node s such that there is no edge (s, x)
where ws,x = T/f . (So its weight is strictly less than T/f .) Then let u and z denote two
nodes such that wu,z = T/f and ws,u = ε for ε > 0. The adversary releases the request
(u, z, T − (T/f), p) for some p > 0. on will not be able to serve the request since an online
server will arrive at u no sooner than T − (T/f) + ε and would not be able to complete
the request by time T , however an optimal algorithm could serve the request. J

3 The Uniform Metric

In this section we provide a greedy 3-competitive algorithm called Best Path (bp) for
ROLDARP on a complete graph with unit edge weights (or in a uniform metric). We use the
term “empty move” to refer to when an algorithm moves the server from one point in the
metric space to another (expending one unit of time) without serving a request. We use the
term request-path to refer to a path of “connected” requests (with no empty moves required
in between) that are currently outstanding (released but not yet served).

The Greatest Revenue First (grf) algorithm of [4] simply serves the request with the
highest revenue at every other time unit (spending the time units in between either standing
still or on empty moves. In contrast, the bp algorithm takes into account the time it saves
when serving a contiguous sequence of connected requests by finding and choosing the
request-path that has the highest revenue per time unit, which we refer to as the “score”.
Specifically, we let score(P ) of a request-path P be the total revenue of the requests in P
divided by the time it takes to complete P , including the time it takes to move from the
current server location to the start of P .

Although grf was already shown in [4] to be 2-competitive, here we present the 3-
competitiveness of the bp algorithm because (1) it is surprising that the simpler more
“naive” grf algorithm has a better competitive ratio, and (2) the Segmented Best Path (sbp)
algorithm, which we present in Section 4 for weighted graphs, is a hybrid of grf and bp, and
(3) bp out-performs grf in experimental simulations. We note that step 3 of the algorithm
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may not be achieved in strict polynomial time (see the run-time discussion of the analogous
step in our sbp algorithm of Section 4 for more details). We defer the proof of the following
theorem, along with our experimental results on the bp algorithm to the full version of this
work.

I Theorem 4. The Algorithm bp is 3-competitive, and this is tight.

4 Weighted Graphs

4.1 The algorithm
We now describe our online algorithm for weighted graphs (see Algorithm 2 for details).
The algorithm splits the total time T into f segments of length T/f where 1 < f < T . At
the start of every other time segment it considers all the unserved requests that have been
released, finds all sets of requests that can be served within one time segment (i.e. within
T/f amount of time), and determines the set that yields the maximum total revenue. We
refer to this as the max-revenue-request-set. It then moves to the source of the first request
in this set and at the start of the next time segment, serves the requests in this set.

To find the max-revenue-request-set, the algorithm maintains a directed auxiliary graph,
G′, which we refer to as the request graph, to keep track of unserved requests. More specifically,
at the beginning of every other time segment the algorithm does the following:
1. For every unserved request r = (s, d, t, p), add a directed edge (s, d) to G′ (so parallel

edges are allowed) with weight equal to its corresponding weight in G, and label this new
edge (s, d) with the revenue p. We refer to edges added to G′ in this step as request-edges.

2. Add a directed edge labeled with revenue 0 from the destination node of each request-edge
to the source node of every other request edge. The weights of these edges are the same
as in G.

3. For every pair of nodes u, v in G′, find all paths of length at most T/f from u to v.
4. For each path P found in the previous step, let πP denote the sum of revenues earned

from the requests that correspond to the request-edges in P .
5. The max-revenue-request-set is the path that has max πP value.

The bottleneck in the time complexity of the algorithm occurs in step 3 of the above
subroutine. We must enumerate all paths in G′ of length at most T/f , and the number of
possible paths is exponential in the size of G′, which is determined directly by the number
of outstanding requests in the current time segment. In many real world settings, one can
expect the size of G′ to be small relative to the size of G. And in settings where T/f is small,
the run time is further minimized, making it feasible to execute efficiently in many plausible
settings.

4.2 Lowerbound
We prove that sbp has a competitive ratio no better than 4 by providing an instance where
the ratio approaches 4 as T grows (with the additive term b equal to the revenue earned by
opt within the last two time segments).

I Theorem 5. If sbp is c-competitive for ROLDARP, then c ≥ 4.

Proof. Consider an instance (G, σ) of ROLDARP as follows. For some even f , there are T
requests released at time 0 and each request requires (T/(2f)) + 1 time to serve and has
priority/revenue 1. In the first f − 2 time segments, opt serves T−(2T/f)

(T/(2f))+1 requests and earns

ATMOS 2017



1:8 Revenue Maximization in Online Dial-A-Ride

Algorithm 2: Algorithm Segmented Best Path (SBP). Input is complete graph
G with time limit T and maximum edge weight T/f .

1: Let t1, t2, . . . tf denote the time segments ending at times T/f, 2T/f, . . . , T ,
respectively.

2: if f is odd then
3: At t1, do nothing.
4: At the start of every ti for even i ≥ 2 find the max-revenue-request-set and

move to the source location of the first request in this set. Denote this request
set as R. If no unserved request sets exist, do nothing.

5: At the start of every ti for odd i ≥ 3, serve request set R (if it exists) from the
previous step.

6: end if
7: if f is even then
8: At the start of every ti for odd i ≥ 1 find the max-revenue-request-set and move

to the source location of the first request in this set. Denote this request set as
R. If no unserved request sets exist, do nothing.

9: At the start of every ti for even i ≥ 2, serve request set R (if it exists) from the
previous step.

10: end if

this amount of revenue. sbp serves during every odd time segment, and due to the time
required for each request, can serve only one request per time segment. So in total sbp can
serve at most f/2 requests and earns this amount of revenue. We have:

opt(G, σ)
sbp(G, σ) ≥

(
T−(2T/f)

(T/(2f))+1

)
f/2 ≥ 4T (f − 2)

(T + 2f)f (3)

J

For any f > 2, as T →∞, the above expression approaches 4.

4.3 Upperbound
We analyze the revenue earned by Algorithm 2 by considering the time segments in pairs.
We refer to each pair of consecutive time segments as a time window, so if there are f time
segments, there are df/2e time windows. Note that the last time window may have only one
time segment.

For notational convenience, we consider a modified version of the sbp schedule, that we
refer to as sbp′, which serves exactly the same set of requests as sbp, but does so one time
window earlier. Specifically, if sbp serves a set of requests during time window i ≥ 2, sbp′
serves this set during time window i− 1 (so sbp′ ignores the set served by sbp in window 1).
We note that the schedule of requests served by sbp′ may be infeasible, and that it will earn
at most the amount of revenue earned by sbp.

For time window i = 1 . . . df/2e − 1, let S′i be the set of requests served by sbp′, which
by definition will serve requests during one of the two time segments of window i, and will
use the other time segment of window i to move.

Let rev(S) denote the revenue earned from a set of requests S. Let S∗(tj) denote
the set of requests served by opt in time segment tj and let S∗i denote the set of re-
quests served by opt during the time segment of window i with greater revenue, i.e. S∗i =
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arg max{rev(S∗(t2i−1)), rev(S∗(t2i))}. Note this set may include a request that was started
in the prior time segment, as long as it was completed in the time segment of S∗i .

We will first show that over the time windows i = 1 . . . df/2e − 1, opt earns no more
than three times the amount of revenue earned by sbp′.

I Lemma 6.
∑df/2e−1

i=1 rev(S∗i ) ≤ 3
∑df/2e−1

i=1 rev(S′i).

Proof. Let H denote the chronologically ordered set of time windows w where rev(S∗w) >
rev(S′w), and let hj denote the jth time window in H. We refer to each window of H as a
window with a “hole,” in reference to the fact that sbp′ does not earn as much revenue as
opt in these windows.

In each window hj there is some amount of revenue that opt earns that sbp′ does not. In
particular, there must be a set of requests that opt serves in window hj that sbp′ does not
serve in hj . Note that if this set is not available for sbp′ in hj then sbp′ must have served
it in some previous windows. Let S∗hj

= Aj ∪ Bj ∪ C∗j , where Aj is the subset of requests
served by both opt and sbp′ in hj , Bj is the subset of requests served in hj by opt, but
served previously by sbp′, and C∗j is the subset of opt’s requests available for sbp′ but sbp′
chooses not to serve.

Our plan is to build an infeasible schedule sbp that will be similar to sbp′, but contain
additional “copies” of some requests such that no windows of sbp contain holes. We will
make no more than 3 copies of each request in sbp′, so ultimately sbp will have revenue at
most 3 times that of sbp′.

We first initialize sbp to have the same schedule of requests as sbp′. We then add
additional requests to hj for each j = 1 . . . |H|, based on S∗hj

. Recall that in our accounting
of the revenue of opt we have allowed requests to be part of a time segment even if opt
began serving them in the previous time segment (see the definition of S∗i above.) So the set
S∗hj

may not fit within a single time segment. We consider two cases based on S∗hj
:

1. The set S∗hj
can be served within one time segment. In this case we know that there must

be a non-empty subset of S∗hj
, Bj , that is not available for sbp′ to serve in hj (because

if it were available sbp′ would serve it or something better, due to its greediness), so
sbp′ must have served Bj in some set Wj of previous time windows. Specifically, a time
window w is in Wj if and only if a request from Bj was served in w by sbp′.
Let us refer to the set of requests served by sbp′ in hj as S′hj

= Aj ∪ Cj for some set
of requests Cj . Notice that if S∗hj

= Aj ∪Bj ∪ C∗j can be executed within a single time
segment, then rev(Cj) ≥ rev(C∗j ), again by greediness of sbp′.
In this case, in sbp we add an additional “copy” of the set Bj to hj . So the requests in
Bj each appear twice in the sbp schedule. Now, hj will no longer be a hole in sbp since

rev(S∗hj
) = rev(Aj) + rev(Bj) + rev(C∗j ) ≤ rev(Aj) + rev(Bj) + rev(Cj) = rev(Shj ) ,

where Shj
is the set of requests served by sbp in hj .

2. The set S∗hj
cannot be served within one time segment. Let k be the index of the time

segment corresponding to S∗hj
. In this case, opt must have begun serving a request of

S∗hj
in time segment tk−1 and completed this request in time segment tk. Let us use r∗ to

denote this request that “straddles” the two time segments. In addition to the copy of Bj

as in Case 1 above, for this case we will also add to sbp a copy of another set of requests.
Again, let us refer to the set of requests served by sbp′ in hj as S′hj

= Aj ∪ Cj for some
set of requests Cj . There are two subcases depending on whether r∗ ∈ C∗j or not.
a. r∗ ∈ C∗j . In this case we have rev(Cj) ≥ max{rev(r∗), rev(C∗j \ {r∗})} ≥ 1

2rev(C∗j ).
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So, in addition to the copy of Bj as in Case 1, we also add a copy of the set Cj to the
sbp schedule, so it serves two copies of Cj in hj . Note that for sbp, hj will no longer
be a hole since

rev(S∗hj
) = rev(Aj)+rev(Bj)+rev(C∗j ) ≤ rev(Aj)+rev(Bj)+2·rev(Cj) = rev(Shj ) ,

where Shj is the set of requests served by sbp in hj .
b. r∗ /∈ C∗j . In this case C∗j can be served within one time segment but sbp′ chooses to

serve Aj ∪ Cj instead. So we have rev(Aj) + rev(Cj) ≥ rev(C∗j ), therefore we know
either rev(Aj) ≥ 1

2rev(C∗j ) or rev(Cj) ≥ 1
2rev(C∗j ). In the latter case, we can do as we

did in sub-case (a) above and add a copy of the set Cj to the sbp schedule in window
hj , to get rev(S∗hj

) ≤ rev(Shj ), as above. In the former case, we instead add a copy of
Aj to the sbp schedule in window hj . Then again, for sbp, hj will no longer be a hole,
since this time

rev(S∗hj
) = rev(Aj)+rev(Bj)+rev(C∗j ) ≤ 2·rev(Aj)+rev(Bj)+rev(Cj) = rev(Shj

).

For each window w not in H, we already have the property that rev(S∗w) ≤ rev(S′w), by
the definition of H. Therefore, in every window for i = 1 . . . df/2e − 1, sbp earns at least as
much revenue as opt. Let rev(Si) denote the revenue earned by sbp in window i. We have:

df/2e−1∑
i=1

rev(Si) ≥
df/2e−1∑

i=1
rev(S∗i ) . (4)

Also note that sbp serves each request no more than three times, as it makes at most
two additional copies of each request in sbp′ (and this is only in the event the same request
in Cj was also copied to some later set Bi). Therefore:

df/2e−1∑
i=1

rev(Si) ≤ 3
df/2e−1∑

i=1
rev(S′i) . (5)

Combining 4 and 5 yields:

df/2e−1∑
i=1

rev(S∗i ) ≤ 3
df/2e−1∑

i=1
rev(S′i). (6)

J

I Theorem 7. If the revenue earned by opt in the last two time segments is bounded by
some constant, then sbp is 6-competitive, i.e., if rev(S∗(tf )) + rev(S∗(tf−1)) ≤ c for some
constant c, then

f∑
j=1

rev(S∗(tj)) ≤ 6
f∑

j=1
rev(S(tj)) + 2c . (7)

Proof. By Lemma 6 we know that
∑df/2e−1

i=1 rev(S∗i ) ≤ 3
∑df/2e−1

i=1 rev(S′i). Let Si denote
the set of requests served by sbp during time window i. Then since sbp′ earns at most the
revenue of sbp, Lemma 6 implies:

df/2e∑
i=1

rev(S∗i ) ≤ 3

df/2e−1∑
i=1

rev(Si)

+ rev(S∗(tf )) + rev(S∗(tf−1)) . (8)



A.D. Christman, C. Chung, N. Jaczko, M. Milan, A. Vasilchenko, and S. Westvold 1:11

Figure 1 Revenue earned for rural setting.

By the definition of sbp, we know:

df/2e∑
i=1

rev(Si) =
f∑

j=1
rev(S(tj)) (9)

and by the definition of S∗i , we have:

f∑
j=1

rev(S∗(tj)) ≤ 2
df/2e∑

i

rev(S∗i ) . (10)

Equations 8, 9, and 10 imply:

f∑
j=1

rev(S∗(tj)) ≤ 6

 f∑
j=1

rev(S(tj))

+ 2rev(S∗(tf )) + 2rev(S∗(tf−1)). J

5 Experimental Results

To evaluate the performance of the sbp algorithm, we simulated three realistic Online Dial-a-
Ride systems. Our experimental settings were informed by data we retrieved from real-world
Dial-a-Ride systems ([5, 6, 7]) and reflected three Dial-a-Ride environments: rural, suburban,
and urban. The problem inputs varied based on the environment type.

We now describe the three settings more specifically. In each setting, a time unit is 10
minutes, so there are 6 time units per hour. The graph is complete and contains 50 nodes
where each is equally likely to be a source or destination of a request (but the same node
cannot be both the source and destination). The origin is randomly chosen from the set
of nodes. The release times of requests are non-integral values uniformly distributed from
t = 0 to t = T − T/f (since no deterministic online algorithm can compete with requests
served by opt during during the last T/f time units; see Lemma 3). Request priorities are
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Figure 2 Revenue earned for suburban setting.

integral values uniformly distributed from 1 to m where m is the number of requests (we
test m = 25, 50, 75, and 100). A request’s priority represents the urgency of the request
(i.e. transport to a pharmacy is more urgent than to a shopping mall).

1. Rural: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54. The maximum distance
between locations is 60 minutes (i.e. 6 time units), so T/f = 6 and f = 9. Edge weights
are chosen uniformly at random from the interval [1, T/f ].

2. Suburban: Time spans 9 hours (from 8:00am to 5:00pm), so T = 54. The maximum
distance between locations is 45 minutes (i.e. 4.5 time units), so T/f = 4.5 and f = 12.
Edge weights are chosen uniformly at random from the interval [1, T/f ].

3. Urban: Time spans 11 hours (from 6:00am to 7:00pm), so T = 66. The maximum distance
between locations is 20 minutes (i.e. 2 time units), so T/f = 2 and f = 33. Edge weights
are chosen uniformly at random from the interval [0.5, T/f ].

Since R-DARP is NP-hard to solve optimally (see Theorem 1), we instead compare our
algorithm, sbp (see Algorithm 2), to an offline version of sbp, as well as to a basic greedy
algorithm. Like sbp, the offline-sbp algorithm serves requests in time segments – i.e. it uses
one time segment to determine and move to the maximum-revenue-request-set and the next
time segment to serve this set. However, unlike sbp, this offline algorithm learns of all the
requests at the start of time (t = 0) and is therefore able to make a more informed decision
about which requests to serve. In contrast, the greedy algorithm does not break time into
segments and instead simply moves to and serves the outstanding request whose revenue is
highest (similar to the grf algorithm of [4]).

Figures 1, 2, and 3 show the results of the experimental simulations. The graphs show
that for all three settings sbp is competitive (colloquially speaking) with the offline and
greedy algorithms. Specifically, in the rural setting, sbp earns approximately 82-86% of the
revenue earned by the offline algorithm and it earns more revenue than the greedy algorithm
when the number of requests is high (100).

Depending on the total number of released requests, sbp earns between 91-95% of the
revenue earned by the offline algorithm in the suburban setting, and between 88-90% in the
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Figure 3 Revenue earned for urban setting.

urban setting. The graphs show that online-sbp improves relative to offline-sbp as the ratio
between the average edge weight and the maximum edge weight (T/f) increases. These
ratios are 58%, 61%, and 63% for the rural, suburban, and urban settings, respectively.
When this ratio is relatively low the offline algorithm is more likely to be able to serve
multiple requests within a single time segment and can better take advantage of having all
the requests available. Specifically for 251 requests, offline serves on average 1.8, 1.2, and 1.2
requests per time segment for rural, suburban, and urban, respectively. Since sbp is unaware
of all the future requests, it is always less likely than offline to serve multiple requests within
a time segment. Specifically, sbp serves on average 1.6, 1.2, and 1 requests per time segment,
respectively. These values show that as the number of requests served per time unit decreases
for offline, the two algorithms’ performances become comparable, but the performance is
most closely matched in the suburban setting when the number of requests served per time
unit is the same for both online and offline-sbp.

While the greedy algorithm often slightly outperforms sbp, it is important to note that
the greedy algorithm has an unbounded competitive ratio, while sbp has both a constant-
competitive worst-case guarantee (as proven in Section 4) and it also performs on par with a
basic greedy algorithm in these “average-case” experimental simulations.

We also determined how our algorithm compares to the overall total revenue released
(i.e. if there are no server capacity or time constraints) and the percentages are as follows. In
the rural setting, sbp earns 34%, 21%, 19%, and 14% of the total revenue for 25, 50, 75, and
100 requests respectively. In the suburban and urban settings, these values are, respectively,
42%, 27%, 21%, and 17% (for suburban) and 81%, 55%, 43% and 36% (for urban). For more
extensive experimental results, including non-uniform distributions, please refer to the full
version of the paper.

1 Similar trends occur for 50, 75, and 100 requests.
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6 Conclusions

In this work we present an initial study on the On-Line Dial-a-Ride Problem with revenues
(ROLDARP) in weighted graphs. We show that the competitive ratio is unbounded for any
deterministic online algorithm for the problem, unless we assume edge weights are bounded
and discount the revenue earned by opt in the last time segment. We provide an algorithm,
sbp, that is 6-competitive with opt, minus the revenue opt earns in the last two time
segments. We also provide a lower bound of 4 on the competitive ratio of sbp. Hence, there
currently remains a gap between the upper and lower bounds on the competitive ratio of sbp.
Other remaining open questions include: whether there are other more efficient and/or more
competitive algorithms for ROLDARP than what we have proposed, both in the uniform
metric as well as for weighted graphs, and whether ROLDARP in the uniform metric is
NP-hard.

Acknowledgements. The authors would like to thank the anonymous reviewers for their
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