
1 23

Journal of Combinatorial
Optimization

ISSN 1382-6905

J Comb Optim
DOI 10.1007/s10878-019-00515-w

Robustly assigning unstable items

Ananya Christman, Christine Chung,
Nicholas Jaczko, Scott Westvold & David
S. Yuen

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Journal of Combinatorial Optimization
https://doi.org/10.1007/s10878-019-00515-w

Robustly assigning unstable items

Ananya Christman1 · Christine Chung2 · Nicholas Jaczko1 ·
Scott Westvold1 · David S. Yuen3

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We study the robust assignment problem where the goal is to assign items of various
types to containers without exceeding container capacity. We seek an assignment that
uses the fewest number of containers and is robust, that is, if any item of type ti
becomes corrupt causing the containers with type ti to become unstable, every other
item type t j �= ti is still assigned to a stable container. We begin by presenting an
optimal polynomial-time algorithm that finds a robust assignment using the minimum
number of containers for the case when the containers have infinite capacity. Then we
consider the case where all containers have some fixed capacity and give an optimal
polynomial-time algorithm for the special case where each type of item has the same
size. When the sizes of the item types are nonuniform, we provide a polynomial-time
2-approximation for the problem. We also prove that the approximation ratio of our
algorithm is no lower than 1.813. We conclude with an experimental evaluation of our
algorithm.

Keywords Approximation algorithm · Robust · Assignment · Hosting · Distributed
system · Combinatorial optimization · Bin packing

B Ananya Christman
achristman@middlebury.edu

Christine Chung
cchung@conncoll.edu

Nicholas Jaczko
njaczko@middlebury.edu

Scott Westvold
swestvold@middlebury.edu

David S. Yuen
yuen@math.hawaii.edu

1 Department of Computer Science, Middlebury College, Middlebury, VT, USA

2 Department of Computer Science, Connecticut College, New London, CT, USA

3 Department of Mathematics, University of Hawaii, Honolulu, HI, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-019-00515-w&domain=pdf
http://orcid.org/0000-0001-9445-1475
http://orcid.org/0000-0003-3580-9275

Journal of Combinatorial Optimization

1 Introduction

We study the robust assignment problem (rap) where we are given various types
of items, each with a weight, where items of the same type have the same weight.
We must assign the items to a set of containers with the constraint that if an item is
found to be corrupt (we assume that there may be at most one such item), then every
container containing an item of that type becomes unstable. Therefore, we would like
at least one item of every other type to remain in at least one stable container. Such an
assignment is considered robust and we would like a robust assignment that uses the
fewest containers while satisfying their weight limit.

More formally, the input is n item types t1, . . . , tn with sizes (or weights)
w1, . . . , wn , respectively, and container capacity C . The output is an assignment
of types to subsets of containers, which uses the fewest containers and satisfies the
following constraints: (1) Each type is assigned to the same number of containers
(2) Each container is assigned at most C total weight (3) The assignment is robust,
that is, for any type ti , if all containers having an item of type ti become unstable,
for all other types t j �= ti , there is a stable container that contains t j . Formally, let
Si = {si,1, si,2, . . . , si,k} for 1 ≤ i ≤ n denote the set of k containers to which an item
of type ti was assigned. Then for every type t j �= ti such that an item of type t j is also
assigned to any container of Si , an item of type t j will exist on some container that is
not in Si . The goal is to find a robust assignment that uses the fewest containers.

rap has many practical applications. For example, in distributed systems, multiple
applications, including instances of the same app, are hosted on a cluster of servers.
If a failure occurs in an app (and may therefore possibly occur in the other instances
of the faulty app), then the app, all of its hosting servers, and hence all other app
instances on those servers, are temporarily suspended. Therefore, the system would
like an assignment of app instances to the minimal number of servers such that if a
failure occurs in an app and therefore all its hosting servers are temporarily suspended,
there is still a running instance of every other app hosted on some unaffected server
in the system. A solution for rap can be used to find such an assignment—the apps
correspond to the items and the servers correspond to the containers. The goals of
our work were in fact motivated by a conversation with industry colleagues who
encountered this problem in their company’s hosting platforms.

Ad placement on webpages is another application of the Robust Assignment Prob-
lem. Ad companies often have ads from multiple clients that must be displayed
throughout various webpages of a website. If an ad crashes or slows down, it may
affect the entire webpage and hence, the other ads displayed on that webpage as well.
Other webpages displaying the faulty ad may need to be temporarily suspended to
repair or check the faulty ad. Therefore ad companies would like an assignment of
ads to webpages such that if a faulty ad temporarily suspends all of the webpages it
is displayed on, there is still a running instance of every other ad on some webpage
on the website. Here, the ads and webpages correspond to the items and containers,
respectively.

rap can also be presented as an application to gardening/agriculture.Avid gardeners
often grow multiple plants of different varieties in several garden beds. Suppose that
during the growing season, it becomes known that a particular plant variety has become

123

Author's personal copy

Journal of Combinatorial Optimization

disease prone. Therefore, all plants that are planted in the same bed as a disease-prone
plant may become infected with the disease. Therefore, gardeners would like to find
a way to plan their garden such that if a plant variety becomes prone to disease, then
at least one plant of each variety still grows.

Our Results For rap we first give an optimal polynomial-time algorithm for finding
the minimum number of containers needed to robustly assign the given set of item
types, ignoring capacity constraints on the containers (Sect. 3.1).We then introduce the
constraint of capacitated containers and give an optimal polynomial-time algorithm
for the special case where each type of item has the same size (Sect. 4). For the
general case of nonuniform sizes, we provide a polynomial-time 2-approximation for
the problem (Sect. 4.2). I.e., our algorithm uses no more than twice the number of
containers of the optimal robust assignment. We also prove that the approximation
ratio of our algorithm is at least 1.813. We conclude with an experimental evaluation
of our algorithm (Sect. 5).

2 Related work

To the best of our knowledge, our specific model for a robust assignment has not been
previously studied. However, our solution ideas draw on those used for the bin-packing
problem and some assignment problems, so we first discuss literature related to both
problems. As mentioned above, in the context of distributed computing, our work
applies to the problem of assigning replicas of applications to servers on a hosting
platform, so we also discuss some literature on variations of this problem.

Our problemmodel has similarities to the problem of bin-packing with conflicts (or
constraints) (Epstein and Levin 2006; Jansen 1999; Jansen and Öhring 1997). In the
most general form of this problem, there are conflicts among the items to be packed and
these conflicts are captured by a conflict graph, where the nodes represent the items
and an edge exists between two items that are in a conflict (Jansen 1999). The goal is
to pack the items in the fewest number of bins while satisfying the capacity constraints
on the bins and ensuring that no two items in a conflict are packed in the same bin.
Jansen proposed an asymptotic FPTAS for this problem for d-inductive graphs (i.e.,
where the vertices can be assigned distinct numbers 1 . . . n in such a way that each
vertex is adjacent to at most d lower numbered vertices) including trees, grid graphs,
planar graphs and graphs with constant treewidth (Jansen 1999). For all ε > 0, Jansen
and Öhring (1997) presented a (2 + ε)-approximation algorithm for the problem on
cographs and partial K -trees, and a 2-approximation algorithm for bipartite graphs.
Epstein and Levin (2006) improved on the 2.7-approximation of Jansen and Öhring
(1997) on perfect graphs by presenting a 2.5-approximation. They also presented a
7/3-approximation for a sub-class of perfect graphs and a 1.75-approximation for
bipartite graphs.

Our problem differs from these previous problems in at least two important ways.
First, the conflicts among our items cannot be easily captured by a conflict graph as
they do not pertain to specific pairs of items, but rather to all pairs of items. Second,

123

Author's personal copy

Journal of Combinatorial Optimization

for our problem, the total number of items that are packed into bins is not predefined,
so an algorithm may create more or less if doing so yields fewer bins.

The wide variety of problems that address the task of assigning items to containers
while satisfying constraints and minimizing or maximizing some optimization objec-
tive are typically classified asGeneralizedAssignment Problems (Chekuri andKhanna
2000; Shmoys and Tardos 1993). While (to our knowledge) no previous works have
considered the requirement of a robust assignment as in our model, a few works have
had some similarities to ours. Fleischer et al. (2006) studied a general class of maxi-
mizing assignment problems with packing constraints. In particular, they studied the
Separable Assignment Problems (SAP), where the input is a set of n bins, a set of m
items, values fi, j for assigning item j to bin i ; and a separate packing constraint for
each bin—i.e., for bin i , a family of subsets of items that fit in bin i ; the goal is to find
an assignment of items to bins with the maximum aggregate value. For all examples of
SAP that admit an approximation scheme for the single-bin problem, they present an
LP-based algorithm with approximation ratio (1− 1

e −ε) and a local search algorithm
with ratio (12 − ε). Korupolu et al. (2015) studied the Coupled Placement problem,
in which jobs must be assigned to computation and storage nodes with capacity con-
straints. Each job may prefer some computation-storage node pairs more than others,
and may also consume different resources at different nodes. The goal is to find an
assignment of jobs to computation nodes and storage nodes that minimizes placement
cost and incurs a minimum blowup in the capacity of the individual nodes. The authors
present a 3-approximation algorithm for the problem.

One application of our work is the problem of assigning replicas of applications to
servers on a hosting platform so that the system is fault-tolerant to a single application
failure. There have been a wide variety of studies on related problems and here we
discuss a few. Rahman et al. (2008) considered the related Replica Placement Problem
where copies of data are stored in different locations on the grid such that if one instance
at one location becomes unavailable due to failure, the data can be quickly recovered.
They present extensive experimental results for this problem. Mills et al. (2017) also
studied a variation of this problem in the setting where dependencies exist among the
failures and the general goal is to find a placement of instances that does not induce
a large number of failures. They give two exact algorithms for dependency models
represented by trees. Urgaonkar et al. (2007) also studied the problem of placing apps
on servers, but do not consider fault tolerance and focus instead on satisfying each
application’s resource requirement. The authors study the usefulness of traditional
bin-packing heuristics such as First-Fit and present several approximation algorithms
for variations of the problem.

More recently, Korupolu and Rajaraman (2016) studied the problem of placing
tasks of a parallelizable job on servers with the goal of increasing availability under
two models of failures: adversarial and probabilistic. In the adversarial model, each
server has a weight and the adversary can remove any subset of servers of total weight
at most a given bound; the goal is to find a placement that incurs the least disruption
against such an adversary. For this problem they present a PTAS. In the probabilistic
model, each node has a probability of failure and the goal is to find a placement that
maximizes the probability that at least a certain minimum number of tasks survive at

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 1 Example of a non-robust assignment. If type 2 is corrupt, no items of type 5 exist

any time. For the most basic version of the problem they study they give an algorithm
that achieves an additive ε-approximation. Stein and Zhong (2018) studied a related
problem of processing jobs on machines to minimize makespan. The jobs must be
grouped into sets before the number of machines is known and these sets must then
be scheduled on machines without being separated. They present an algorithm that is
guaranteed to return a schedule on any number of machines that is within a factor of
(53 + ε) of the optimal schedule, where the optimum is not subject to the restriction
that the sets cannot be separated.

3 Preliminaries

We begin by presenting a small example instance of RAP to provide concreteness.
Figures 1 and 2 show two assignments and the corresponding states of the containers
for n = 6 item types. In Fig. 1, the assignment is not robust—if type 2 is found to be
corrupt, then no items of type 5 will exist in any other containers since all items of
type 5 are in the same set of containers as items of type 2 (a similar problem occurs
with types 3 and 4). Figure 2 depicts one robust assignment using the optimal number
of containers: 4. Note that if an item of type 2 fails, then all item types contained in B
and D exist in some other container. Further note that in this assignment if any of the
item types are found to be corrupt, this robustness property holds.

We note that the remainder of this section applies to the more general form of the
problem where each item type may be assigned to a different number of containers.

A robust assignment is characterized by whether each type is assigned to a set of
containers that is not a subset of the set of containers assigned to any other type. We
present this characterization formally as our first Lemma.

Lemma 1 Let Si = {si,1, si,2, . . . , si,ki } for 1 ≤ i ≤ n denote the set of ki containers
to which an item of type ti was assigned. An assignment of item types to containers is
robust if and only if there is no pair of item types ti , t j such that Si ⊆ S j .1

1 Note that Si ⊆ S j is the condition for the general case; for the case where ki = k j for all i, j ∈
{1, 2, . . . , n}, the condition is Si = S j .

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 2 An optimal robust assignment. If any type is corrupt, all other types still exist

Proof First we show that a robust assignment implies no pair of types ti , t j will be
such that Si ⊆ S j . Suppose by way of contradiction that there is some pair of types
ti , t j where Si ⊆ S j . This means if type t j is found to be corrupt, and all the containers
in S j become unstable, then all the containers in Si also become unstable. In this case
there are no items of type ti in stable containers so the assignment was not robust. We
now prove the other direction of the lemma. Suppose for contradiction we have no pair
of types ti , t j such that Si ⊆ S j , but the assignment is not robust. If it is not robust,
there is some type th such that removing the containers in Sh will leave another type
Sh′ in no remaining containers. But for this to be true, it must be that Sh′ ⊆ Sh which
is a contradiction. ��

3.1 Uncapacitated robust assignment problem

In this sectionwe begin by considering the special case of the rapwhere the containers
have infinite capacity. To tackle the Uncapacitated robust assignment problem we first
consider the inverse problem: given m containers, what is the maximum number of
item types we can assign robustly? Due to Lemma 1 this problem can be modeled
as the combinatorics problem of finding the maximum cardinality antichain of a set.
Specifically, let P denote the set of subsets ofm elements {1, 2, . . . ,m}. An antichain
of P is a set P̄ = {s1, s2, . . . , sa} ⊆ P such that for any pair of subsets si , s j in P̄ ,
si � s j . Table 1 shows all antichains for m = 1, 2, and 3.

3.2 Antichains

Table 1 shows all antichains for m = 1, 2, and 3.
Sperner’s Theorem [1928] states that the maximum cardinality of an antichain P̄

of an m-sized set is
(m
	m/2

)
and each subset of P̄ has size m/2. (If m is odd then

there will be two maximum cardinality antichains whose subsets will have size 	m/2

and �m/2�, respectively.) For example, the last two rows of the rightmost column in
Table 1 show the maximum cardinality antichains for m = 3 (both have cardinality

123

Author's personal copy

Journal of Combinatorial Optimization

Table 1 Antichains for sets of subsets of m elements

m P Antichains

1 {∅, {1}} {∅}, {{1}}
2 {∅, {1}, {2}, {1, 2}} {∅}, {{1}}, {{2}}, {{1}, {2}}, {{1, 2}}
3 {∅, {1}, {2}, {3}, {∅}, {{1}}, {{2}}, {{3}},

{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} {{1, 2}}, {{1, 3}}, {{2, 3}},
{{1, 2, 3}},
{{1}, {2}}, {{1}, {3}}, {{2}, {3}},
{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}},
{{1, 2}, {1, 3}}, {{1, 2}, {2, 3}}, {{1, 3}, {2, 3}},
{{1}, {2}, {3}},
{{1, 2}, {1, 3}, {2, 3}}

Table 2 The maximum number
of types that can be robustly
assigned to 1 ≤ m ≤ 10
containers

m (# of containers) Maximum number of item
types that can be robustly
assigned

1 1

2 2

3 3

4 6

5 10

6 20

7 35

8 70

9 126

10 252

3). Therefore, Sperner’s Theorem yields the maximum number of item types that can
be assigned to m containers as well as the number of containers to which each type is
assigned. The values in Table 2 were derived from Sperner’s Theorem.

We can thus use this theorem in conjunction with Lemma 1 to solve our original
assignment problem—that is, given n types, find the minimum number of containers
required to assign these types. Specifically, given n types, we would like to find the
smallest m such that

(m
	m/2

) ≥ n. See Algorithm 4 for further details.

Theorem 1 The uncapacitated robust assignment problem is solvable in time polyno-
mial in n, the number of item types.

Proof Due to Sperner’s Theorem and Lemma 1, Algorithm 1 correctly returns the
minimum number of containers required. Steps 1 and 2 take no more than time linear
in the number of types as n serves as a trivial upperbound on the value ofm that satisfies
the Sperner’s Theorem condition. Steps 3 and 4 of the algorithm require enumeration

123

Author's personal copy

Journal of Combinatorial Optimization

Algorithm 1: Input is n item types.
1: Apply Sperner’s Theorem: find the minimum integer m such that

(m
	m/2

) ≥ n.
2: Set up m empty containers.
3: Generate all

(m
	m/2

)
of the 	m/2
-combinations of the m containers.

4: Assign each item type one of the 	m/2
-combinations, i.e., for each type, assign an item of that
type to each of the 	m/2
 containers in the 	m/2
-combination that this type was assigned to.

of the
(m
	m/2

)
combinations; the number of combinations is exponential inm, but since

the chosen m will be O(log(n)), the composite run time is still polynomial in n. ��

Note, we can potentially find the solution more quickly by computing upper and
lower bounds on m using Stirling’s approximation which states that

(m
	m/2

) ≈ m +
1
2 − 1

2 log2(mπ) (Stirling 1730).

4 The robust assignment problemwith capacity constraints

In Sect. 3.1, we implicitly assumed that an unlimited number of items can be assigned
to any one container. However, in practical settings, constraints such as storage space,
memory, or other demands will impose limits on the number of items a container may
hold. We therefore consider a model where there is one such constraint. We will use
the example of a storage constraint for expository purposes.

The problem now becomes: given n types t1, t2, . . . , tn with integer-valued sizes,
w1, w2, . . . , wn , respectively, where items of type ti have size wi ; and an integer-
valued container capacity C , where 1 ≤ wi ≤ C , find an assignment of items to
containers such that each type is assigned the same number of containers, k, and the
assignment is (1) robust, (2) minimizes the total number of containers, and (3) satisfies
the following capacity constraint: if A j is the set of items assigned to container s j ,
then for all containers j = 1 . . .m, where m is the number of containers used in the
assignment,

∑
a∈A j

w(a) ≤ C , where w(a) is the size of item a. We refer to this
variant as the capacitated robust assignment problem.

As a small example, suppose in Fig. 2, types 1, 2, . . . , 6 have sizes 1, 2, . . . 6,
respectively. Then if C = 12, the assignment shown in the figure would not satisfy
the capacity constraint since both containers D and E currently use 13 units of size.
Figure 3 shows an altered assignment that satisfies both the robustness and capacity
constraints.

Fig. 3 An assignment that satisfies both the robustness and capacity constraints for capacity equal to 12

123

Author's personal copy

Journal of Combinatorial Optimization

4.1 Uniform sizes

We first consider the special case where each type, and therefore each item, has the
same size w. Given n such types and containers of capacity C ≥ w, the problem
is to find an assignment of types to the minimal number of containers such that the
assignment is robust and also satisfies the capacity constraints. In this case the capacity
constraint is that if |A j | denotes the number of items assigned to container s j , and m
is the number of containers in the assignment, then for all j = 1 . . .m, |A j |w ≤ C .

Theorem 2 The capacitated robust assignment problem with uniform sizes is solvable
in time polynomial in n, the number of item types.

Proof Algorithm 2 solves this problem optimally. Recall that k denotes the number
of items of each type. The algorithm effectively performs an exhaustive search to find
the minimum m over all possible k for which the robustness and capacity constraints
are satisfied. Specifically, the algorithm starts with the lower bound for m (given by
Sperner’s Theorem) and searches every possible integral value of k given this m (i.e.,
starting from k = 	m/2
 down to k = 1) that will satisfy both the robustness and
capacity constraints. Robustness is satisfied if

(m
k

) ≥ n and the capacity constraint
is satisfied if 	C

w

 ≥ nk

m . (Refer to Algorithm 3 and Lemmas 2 and 3 for why this
capacity condition suffices.) If no value for k for the givenm satisfies both constraints,
the algorithm increments m and repeats the search for k.

The details for assigning the n types robustly to the m containers computed by
Algorithm 2 are described in Sect. 4.1.1. We also note that while there are ways to
optimize the run-time of our algorithm, the exhaustive-search version we present here
is for the sake of simplicity and clarity.

Note that the algorithm will eventually terminate: if eventually m is incremented
to n and k is decremented to 1 both conditions of the while loop will be true. There
will be O(n2) iterations of the while loop. Each iteration takes constant time so the
runtime of the loop is O(n2). The polynomial run-time and correctness of step 11
(Algorithm 3) is addressed in Lemmas 3 and 4in Sect. 4.1.1 So the overall run time of
Algorithm 2 is polynomial in n. ��

We note that if the problem is simply to find the minimum number of containers
needed for the robust assignment, without also requiring the robust assignment itself,
one can do so in polylog(n) time by formulating the problem as a fixed-dimension
integer program. Namely, given inputs (n,C) where for simplicity we assume w = 1,
then we want to solve the system 1 ≤ k ≤ m/2, kn ≤ mC ,

(m
k

) ≥ n for k and m
with m minimal. The key observation is that for any fixed m, the k satisfying the first
two equations that yield the largest

(m
k

)
is k = 	min(m/2,mC/n)
. Thus whether

or not an m has a corresponding k that satisfies the three equations is equivalent to
whether or not

(m
	min(m/2,mC/n)

) ≥ n. Because we can show
(m
	min(m/2,mC/n)

)
is an

increasing function inm, thenwe can do a binary search for theminimalm that satisfies(m
	min(m/2,mC/n)

) ≥ n in the interval [1, n]. This would be far more efficient than the
brute force while-loop that we give in Algorithm 2.

123

Author's personal copy

Journal of Combinatorial Optimization

Algorithm2: Input is the container capacityC , n item types, and item sizew ≤ C .
1: Apply Sperner’s Theorem: find the minimum integer m such that

(m
	m/2

) ≥ n.
Note that m is a lower bound on the number of containers required to assign the types.

2: k = 	m2

3: while not (

(m
k
) ≥ n and 	Cw
 ≥ nk

m) do
4: if k > 1 then
5: k − − //decrease the number of items per type
6: else
7: m + + //add another container
8: k = 	m2
 //re-initialize k for the new m
9: end if
10: end while
11: For details on how to assign k items of each type so that the robustness and capacity constraints

are satisfied using m containers of capacity C , refer to Algorithm 3 in Sect. 4.1.1.

4.1.1 Details for the case of uniform sizes

To assign the types to containers in the case of uniform sizes, we can use the sub-
procedure detailed in Algorithm 3. We begin by invoking Algorithm 2 from Sect. 4.1
to compute optimal values for m, the number of containers we will use, and k, the
number of items per type.

In the algorithm, we let M0, M1, . . . , Mm−1 refer to the m containers, and we
use the term contiguous set to refer to a subset of k of these containers con-
secutively, allowing “wrap-around.” So, a contiguous set of containers is a set
Mi mod m, Mi+1 mod m, Mi+2 mod m, . . . , Mi+k−1 mod m for any integer i ≥ 1.

We define the translate, Tw(X), of a subset of containers

X = {Mx1, Mx2 , . . . Mxk }

to be

Tw(X) = {M(x1+w) mod m, M(x2+w) mod m, . . . , M(xk+w) mod m}.

Lemma 2 In each iteration of the while loop in Algorithm 3, each container is used
an equal number of times. I.e., in any iteration i of the while loop, if container j is
assigned ni types during iteration i , then all m containers are assigned ni types in
iteration i .

Proof It is clear that if T (S) has no repeated sets, then by the symmetry of the
translates in T (S), each container must appear an equal number of times among
the sets of T (S). Now we consider the case where T (S) has repeated sets that
are then removed in line 7. This case is handled by the following observation. Let
T (Y) = {T0(Y), T1(Y), . . . Tm−1(Y)} be the set of all translates of any subset of con-
tainers, Y . Again, by the symmetry of the translates in T (Y), if any set in T (Y) is
repeated r times, then all the sets are repeated r times. Hence the sets remaining in
T (S) on line 8 maintain the property that each container occurs an equal number of

123

Author's personal copy

Journal of Combinatorial Optimization

Algorithm3: Input is the container capacityC , n item types, and item sizew ≤ C .
1: Use Algorithm 2 from Sect. 4.1 to compute m, the minimum number of containers needed,

along with k, the corresponding number of items per type for the given C and w.
2: Let the m containers be called M0, M1, . . . , Mm−1.
3: Let i = 0
4: while n − i > m do
5: Let S be a non-contiguous set of k containers that has not already been assigned to a type

(in line 9 below).
6: Let T (S) = {T0(S), T1(S), T2(S), . . . , Tm−1(S)} be the set of all m “translates” of S.
7: Ensure the sets in T (S) are distinct by removing any repeated sets in T (S).
8: for each set S′ in T (S) do
9: Assign one item of type ti to each of the k containers in S′
10: i++
11: end for
12: end while

{now at most m types remain to be assigned}
13: j ′ = 0
14: j = j ′
15: for each remaining type ti still unassigned do
16: Let C j = {Mj mod m , Mj+1 mod m , . . . , Mj+k−1 mod m }
17: Assign one item of type ti to each of the k containers in C j
18: j = j + k
19: if j ≥ m then
20: j ′++
21: j = j ′
22: end if
23: end for

times. Specifically, this number will be between 1 and k since the at most m translates
each contain k containers. ��

The idea of the following proof of correctness of Algorithm 3 is that due to Lemma
2, the algorithm is always assigning types to containers in a completely load-balanced
way, which maintains the availability of all

(m
k

) ≥ n combinations of the containers.

Lemma 3 Algorithm 3 robustly assigns all n types to the m containers given by Algo-
rithm 2.

Proof To achieve a robust assignment the algorithmmust assign each type to a distinct
k-combination of containers without exceeding any container’s capacity. Note that by
Algorithm 2,

(m
k

) ≥ n so S (in Line 5) will always be non-empty and therefore the
while loop will terminate with i ≥ n − m. It is clear that all assignments made in the
while loop are made to distinct k-combinations as S is chosen to be a k-combination
that has not yet been assigned, and any sets in T (S) that are repeated are removed
before making assignments. The assignments made in the for loop that follows on
line 15 are also distinct k-combinations from those already used because these are all
contiguous sets of containers, while the while loop exclusively used non-contiguous
k-combinations. What remains to show is that no container capacity is ever exceeded.

Assume for contradiction that the algorithm at some point assigns a type to a con-
tainerM that is already at capacity (has been assigned 	C/w
 types), thereby exceeding
its capacity. Consider the first moment this occurs. We will reach a contradiction in

123

Author's personal copy

Journal of Combinatorial Optimization

both of two separate cases based on whether this moment occurs during the while loop
or during the later for loop on line 15.

Case 1 The container M is filled to capacity during iteration i of the while loop
and later, during iteration j ≥ i of the while loop, the algorithm attempts to assign
another type to M , exceeding its capacity. By Lemma 2, after each iteration of the
while loop, all the containers must be equally loaded. Hence ifM was filled to capacity
in iteration i this must mean all containers were filled to capacity in that iteration. And
since we have nk ≤ 	C/w
m, by the condition of the while loop in Algorithm 2,
filling 	C/w
m space implies that all k items of each of the n types have already been
assigned by that iteration. Contradiction.

Case 2 The container M that is already filled to capacity is assigned another type
(therefore exceeding its capacity) during the for loop on line 15. Note that similar to
the while loop, the for loop has the property of using the containers in a load balanced
way, by assigning the remaining (at most m) types to “non-overlapping” contiguous
subsets of the m containers. Note that there are m such distinct contiguous subsets
that have not already been assigned so we are guaranteed to have enough for the
remaining types. Further note that looping through them k at a time, “end-to-end,” as
the algorithm does, load-balances them while ensuring that none are used twice.

Since we have already established that the while loop always fills the containers
in a perfectly load-balanced way, we can conclude that at any moment during the for
loop on line 15, the loads of the containers are within one type of one another. That
is, if a least-loaded container has been assigned s types, then each of the m containers
has been assigned either s types or s + 1 types. In this case, the container M that is
at capacity is being assigned its s + 1th type (in excess of its capacity), call it type t ′.
Let x be the number of containers that have s + 1 types after type t ′ is assigned. Note
x ≥ 1 since M has s + 1 types.

This implies nk ≥ s(m−x)+(s+1)x = ms+x , whichmeans nk > ms. However,
nk ≤ 	C/w
m, which means 	C/w
 ≥ s + 1. Contradiction, with the assumption
that the capacity of M is exceeded. ��

Lemma 4 Algorithm 3 is a polynomial time procedure.

Proof The while loop on line 4 iterates n − m times. Line 5 can be executed in time
O(n2k) since we can choose potential sets for S in lexicographical order, and for each
candidate, (at worst) loop through a list of k-combinations that we have already used
to see if it is present. The remainder of the while loop body can clearly be executed
in polynomial time. And the for loop on line 15 iterates at most m times, so the total
run time of Algorithm 3 is at most polynomial. ��

4.2 Nonuniform sizes

In this section we consider the variant of the problem where there may be a different
size 1 ≤ wi ≤ C for each type ti . In this case, if we ignore the robustness constraint, the
problem would be NP-hard due to its equivalence to bin-packing (Garey and Johnson
1979). We first present our algorithm, Robust First Fit (rff), for this problem and

123

Author's personal copy

Journal of Combinatorial Optimization

prove that its approximation ratio is at most 2. We then show that the approximation
ratio of rff is not lower than 1.813.

4.2.1 The robust first fit algorithm

rff begins by sorting the types in descending order by size. When finding an assign-
ment for type ti the algorithm first finds the set S of all the containers that have enough
empty space to fit an item of type ti . It then assigns an item of type ti to the (lexi-
cographically) first container assignment that can be created from the containers in S
that has not already been used by a previous type.

Whenever no suitable assignment can be created for type ti with the existing con-
tainers, a new empty container is created. An assignment with a storage constraint will
never require fewer containers than an assignment without a storage constraint, so the
number of containers (m) and number of items of each type (k) are initialized to the
values given by Sperner’s Theorem. The for-loop in step 3 accounts for the fact that
decreasing the number of items of each type might decrease the number of containers
required. Therefore, we start with k = 	m/2
, as given by Sperner’s Theorem, and
try decreasing the number of items from there.

rff runs in polynomial time. Since the initial value of m from step 2 can be at
most n, the for-loop in Step 3 will run for at most O(n) iterations. Each iteration of
the loop finds an assignment for n types. To find an assignment for each type ti , the
algorithm searches for a k-combination that is available (i.e., has not already been
assigned) whose containers have sufficient space for an item of type ti . This can be
done in poly-time as there will never be more than O(n) k-combinations to check
before finding one that is available. Since the number of containers will be no more
than n · n

2 = O(n2) (i.e., if one item of each type was assigned to its own dedicated
container), the algorithm may reach Step 10 (which causes a new iteration from Step
7) O(n2) times. Hence the overall run-time of rff is polynomial.

We note that there are clearly ways to optimize the run-time of our algorithm if
one wishes to implement it on a real-world system (for example, using binary search
instead of linear search). The version we present here is for the sake of simplicity and
clarity.

4.2.2 Upper bound

We now show that rff has an approximation ratio of no worse than 2.

Theorem 3 rff is a 2-approximation for the capacitated robust assignment problem
with nonuniform sizes. I.e., rff will use at most 2m∗ containers to robustly assign all
n types, where m∗ is the number of containers that an optimal solution uses.

Proof Consider any input instance. Let n denote the number of item types to be
assigned, let opt be an optimal robust assignment for them, and let k∗ be the num-
ber of items assigned per type in opt. It suffices to show that rff uses at most 2m∗
number of containers in iteration k = k∗ since rff ultimately chooses the value of k
that minimizes the number of containers required. Hence, if rff uses no more than

123

Author's personal copy

Journal of Combinatorial Optimization

Algorithm 4: Robust First Fit (rff). Input is the container capacity C and a
set T of n types where all items of type ti have size wi ≤ C for 1 ≤ i ≤ n.
1: Sort the types in descending size order.
2: Apply Sperner’s Theorem: find the minimum integer m such that

(m
	m/2

) ≥ n.
Note that m is a lower bound on the number of containers required to hold the items robustly.

3: for k = 	m2
 to 1 do
4: Set up m′ = m empty containers.
5: for each type ti in T do
6: Let S denote the subset of the m′ containers that still have sufficient space to fit an item

of type ti
7: while ti not assigned do
8: if a k-combo of S is still available for assignment then
9: Let S′ be the lexicographically-first such available k-combo of S
10: Assign ti to S′ (i.e., assign one item of type ti to each of the k containers in S′).
11: Mark/note that the k-combo S′ is no longer available.
12: else
13: Add a new container to S, and increment m′. (Note that k does not change.)
14: end if
15: end while
16: end for
17: Store m′ along with the corresponding assignment.
18: end for
19: Return the assignment among those stored in Step 20 that used the fewest containers (i.e., had the

smallest value of m′).

2m∗ containers when it assigns k∗ items per type, it must ultimately not use more than
2m∗ containers. We also may assume k∗ ≥ 2, since in the case of k∗ = 1 rff and opt
will both use a dedicated assignment (one item of each type per container) so rff will
return an optimal assignment, using m = m∗ containers.

Suppose for contradiction that opt uses m∗ containers while rff uses strictly more
than 2m∗ containers when assigning the n types. Consider the moment during the
execution of the rff algorithm that container number 2m∗ + 1 was opened and added
to S. Let ti be the type that was being assigned when rff opened this (2m∗ + 1)th
container. Let wi be the size of type ti . Let S<i be the set of 2m∗ containers already in
use by the algorithm when it tried to assign ti , but before it added container number
2m∗ + 1. Note that rff has sorted and re-indexed the types in descending size order.

Case 1 2 ≤ k∗ ≤ 	m∗/2
, wi > C/3. Let B denote the set of all types t j for whom
w j > C/3. Note that type ti ∈ B. Due to their size, no more than two items of types
in B can fit on a single container, so there can be no more than 2m∗ such items in total,
i.e., k∗|B| ≤ 2m∗. Note however, that rff must be able to assign the k∗|B| ≤ 2m∗
items to at most 2m∗ containers because 2m∗ containers would indeed be sufficient
for even a dedicated assignment: one item of each type per container. This contradicts
the assumption that type ti required rff to open a (2m∗ + 1)th container.

Case 2 2 ≤ k∗ ≤ 	m∗/2
,wi ≤ C/3. In this case, we consider two sub-cases. Subcase
1: there are at least m∗ containers in S<i with available space at least wi (i.e., enough
space for an item of type ti). In this case, we would then have a robust assignment
from the set S<i for ti because opt needed only m∗ containers total to assign all n

123

Author's personal copy

Journal of Combinatorial Optimization

types, so having m∗ containers must provide enough k∗-combinations to have at least
one left for ti .

Subcase 2 there are fewer thanm∗ containers in S<i with available space at leastwi .
So, in this case there must be m∗ + x containers S̄ ⊆ S<i , where x > 0, that have less
thanwi available space.We can say that each of these containers in S̄ already has filled
capacity C̄ > C − wi . So if w(S̄) is the total size of all of the items in the containers
in S̄, then w(S̄) > (m∗ + x)(C − wi). Since opt used m∗ containers of capacity C to
assign all k items of each of the n types robustly, we have (m∗ + x)(C − wi) < m∗C .
Recalling that we are in the case where wi ≤ C/3, we then have

(m∗ + x)

(
C − C

3

)
= (m∗ + x)

(
2C

3

)
< m∗C .

This implies 2xC/3 < m∗C/3, which implies

x < m∗/2. (1)

Let Ŝ = S<i − S̄ be the set of containers in S<i that still have enough remaining
capacity to store an item of type ti . For type ti to be unable to be assigned to these
|Ŝ| = |S<i | − |S̄| = m∗ − x containers, it must be due to robustness: they must have
no remaining available unique combinations of containers. We will show however,
that if this were true, it would also lead to a contradiction.

If there are no unique combinations of containers remaining in Ŝ to assign ti to, there
must be at least

(m∗−x
k∗

)
distinct types that are already assigned to those containers. In

other words, if

T̂ = {t j ∈ T : an item of type t j is assigned to some container in Ŝ},

then |T̂ | ≥ (m∗−x
k∗

)
. This is true because if |T̂ | <

(m∗−x
k∗

)
then there would be at least

one remaining available k∗-combination of the containers in Ŝ on which to assign ti .
rff considers types in descending order by size so each item of the |T̂ | ≥ (m∗−x

k∗
)

types must take up at least as much space as wi . Thus, w(Ŝ) ≥ (m∗−x
k∗

)
kwi , where

w(Ŝ) is the total size of all the items on the m∗ − x containers of Ŝ.
The size of all the itemswhich are assigned to the 2m∗ containers of S<i isw(S<i) =

w(S̄) + w(Ŝ) ≥ (m∗ + x)(C − wi) + (m∗−x
k∗

)
k∗wi . Again, opt used m∗ containers of

capacity C so we know the total size of all the items cannot be more than m∗C . Thus,

(m∗ + x)(C − wi) +
(
m∗ − x

k∗

)
kwi ≤ m∗C (2)

By expanding the left hand side of (2) we get

m∗C − m∗wi + xC − xwi +
(
m∗ − x

k∗

)
k∗wi ≤ m∗C

123

Author's personal copy

Journal of Combinatorial Optimization

and rearranging terms gives us:

xC +
(
m∗ − x

k∗

)
k∗wi ≤ m∗wi + xwi (3)

By combining Eqs. 3 and 1with wi ≤ C/3 we get

3xwi +
(
m∗ − x

k∗

)
k∗wi ≤ m∗wi + m∗

2
wi

which implies
(m∗−x

k∗
)
2k∗ + 6x ≤ 3m∗. Using the fact that 2 ≤ k∗ ≤ 	m∗

2
 yields
(
m∗ − x

k∗

)
4 + 6x ≤ 3m∗. (4)

It is a fact for any integers a, b > 0, where b < a, that
(a
b

) ≥ a; and we know
m∗ − x ≥ k∗ (since by Eq. (1) we know x < m∗/2 and we are currently in the case
where k∗ ≤ m∗/2). Hence we can say from Eq. 4 that 4(m∗ − x) + 6x ≤ 3m∗, which
is a contradiction.

Both cases resulted in contradiction. So, rff will never use more than 2m∗ con-
tainers. ��

4.2.3 Lower bound

We now provide a family of examples that give a lower bound on the approximation
ratio of rff. The family of examples is parameterized by a positive integer d ≥ 3.
We refer to the following instance as I (d). There are n = (2d+3

d

)
types, of which

� = 2d − 1 are “large” types and s = n − � are “small” types. The small types
have size 1, while the large types have size L = s. Suppose the containers each have
capacity C = dL . We first give an optimal assignment for this family.

Lemma 5 For instance I (d), an optimal assignment uses m∗ = 2d + 3 containers.

Proof First we note that since d ≥ 2, we have 1
d+1 < 2d+3

(d+3)(d+2) . Then

(2d + 2)!
(d + 1)d!(d + 1)! <

(2d + 3)(2d + 2)!
d!(d + 1)!(d + 3)(d + 2)

,

from which we get

(
2d + 2

d + 1

)
<

(
2d + 3

d

)
= n.

By Sperner’s Theorem, this says that instance I (d) requires at least m = 2d + 3
containers and this number of containers is possible when k = d. Now, letting k = d,
since

123

Author's personal copy

Journal of Combinatorial Optimization

k� = d(2d − 1) = 2d2 − d ≤ 2d2 + d − 3 = (d − 1)(2d + 3) = (d − 1)m,

we can store k items of each of the � large types on the m containers with at most
d − 1 items on each container (by Lemma 2 in Sect. 4.1.1). Since the capacity of each
container is C = dL , each container will have at least capacity L remaining. We will
then use the remaining

(2d+3
d

) − � combinations, which is exactly s, the number of
small types, to assign the small items. By design, Lm ≥ ds and so there is enough
remaining capacity to do this. Therefore 2d + 3 is the optimal number of containers
for the instance I (d). ��

Given an instance I (d), we now establish the number of containers returned by
rff.

Lemma 6 For an instance I (d), for each integer 1 ≤ k ≤ d + 1, we define

y(k) =min

{
j :

(
j + 2d − 2k + 4

j

)
≥ d − 1

}

z(k) =min

{
j :

(
j

k

)
≥ s

}

While using k items of each type, rff will return the number of containers equal to:

m(k) = 2k − 1 − y(k) + z(k).

Then rff will return the number of containers such that m(k) is minimal over 1 ≤
k ≤ d + 1.

(Please refer to Table 3 for example values of y(k) and z(k)).

Proof rff begins by calculating that at least 2d + 3 containers are needed, and so
rff will loop from k = d + 1 down to k = 1 in search of the minimum number
of containers needed. In what follows, we index both the containers and item types
starting from 0. Consider a fixed k for 1 ≤ k ≤ d + 1. rff will assign each large item
type ti , for each i = 0, . . . , d−1, to containers {0, . . . , k−2, k−1+i}. Then the other
remaining d−1 large types are assigned to containers k−1, . . . , 2k−2− j and some
order j subset of {2k−1− j, . . . , 2d+2}, which has cardinality j+2d−2k+4, for j
large enough such that

(j+2d−2k+4
j

) ≥ d−1. For any such j , the containers numbered
0 through 2k − 2 − j would be filled to capacity with large types. Thus calling y(k)
the minimum such j , we have that exactly the first 2k − 1− y(k) containers are filled
and the other containers have at least capacity L remaining.

Let z(k) be the smallest positive integer such that
(z(k)

k

) ≥ s. To assign the s small
types, it is clear we need at least z(k) containers beyond the 2k − 1− y(k). For d ≥ 3,
we can prove by induction that

s =
(
2d + 3

d

)
− (2d − 1) >

(
2d + 2

d + 1

)
. (5)

123

Author's personal copy

Journal of Combinatorial Optimization

Table 3 The number of containers output by rff and opt for different values of d. rff outputs the minimal
m(k) over 1 ≤ k ≤ d + 1 while opt outputs m∗ = 2d + 3

d k y(k) z(k) rff output opt output rff/opt

5 5 1 13 21 13 1.615

8 8 2 19 32 19 1.684

9 8 2 22 35 21 1.666

15,000 10, 611 2 33, 185 54, 404 30, 003 1.81328

25,000 17, 663 2 55, 348 90, 671 50, 003 1.81331

35,000 24, 710 2 77, 521 12, 6938 70, 003 1.81332

This is true for d = 3, and assuming it is true for a particular d, then we multiply
the lefthand side by (2d+4)(2d+5)

(d+1)(d+4) and the righthand side by (2d+3)(2d+4)
(d+2)2

, the latter of
which we can prove is smaller by cross-multiplying. We then get

(
2d + 5

d + 1

)
− (2d − 1)

(2d + 4)(2d + 5)

(d + 1)(d + 4)
>

(
2d + 4

d + 2

)
.

Now we can check by cross-multiplication that (2d − 1) (2d+4)(2d+5)
(d+1)(d+4) > (2d + 1).

Then
(2d+5
d+1

)−(2d+1) >
(2d+4
d+2

)
, which is Eq. 5 with d replaced by d+1, completing

the induction. Then
(z(k)

k

) ≥ (2d+3
d

) − (2d − 1) >
(2d+2
d+1

)
implies z(k) ≥ 2d + 3.

Now note that by definition of z(k) that
(z(k)−1

k

)
< s. Because z(k) ≥ 2d + 3 and

k ≤ d + 1 < z(k)/2, then
(z(k)−1

k−1

)
<

(z(k)−1
k

)
< s = L. Thus L · z(k) ≥ k

(z(k)
k

)
.

By Lemma 2 (in Sect. 4.1.1), we can robustly assign each of
(z(k)

k

)
small types to

k out of z(k) containers each with capacity at least L and in particular rff would
naturally do this because every combination of k out of z(k) containers is used. Since
s ≤ (z(k)

k

)
, then rff would successfully use z(k) containers to robustly assign the s

small types. Thus we have shown that rff with k ≤ d + 1 items of each type uses
2k − 1− y(k) + z(k) containers. Thus rff uses the number of containers equal to the
minimum of 2k − 1 − y(k) + z(k) for 1 ≤ k ≤ d + 1. ��

Theorem 4 The approximation ratio of rff is no better (lower) than 1.813.

Proof Let d = 15000, and consider the instance I (d) as defined above. By Lemma 6,
rff ends up using k = 10611 and y = 2, z = 33185 andm = 54404 for this instance,
while (by Lemma 5) an optimal assignment requires only m∗ = 2d + 3 = 30003.
(Please see Table 3.) ��

5 Experimental results

As described in Sect. 1, rap can be applied to assigning app instances to the minimal
number of servers on a hosting platform while ensuring that if a failure occurs in

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 4 Number of servers used when server capacity is 64 GB

an app and therefore all its hosting servers are temporarily suspended, there is still
a running instance of every other app hosted on some unaffected server. Formally,
we are given n apps where app i has size di and server capacity C . We would like
to find an assignment of app instances to the minimal number of servers m, such
that the assignment is robust and satisfies the capacity constraint. To evaluate the
performance of the rff algorithm, we simulated a hosting platform and measured the
number of servers used by the algorithm. Specifically, we tested four values for server
capacity C (64 GB, 128 GB, 256 GB, and 512 GB), varied the number of apps from
n = 25 to n = 250 apps (at increments of 25) and set app sizes di to be normally
distributed between 4 and 16 GB. We compared rff to a dedicated system (i.e., where
the number of servers is simply the number of apps) and an “ideal” assignment,
which does not correspond to any feasible robust assignment, but serves as a lower
bound on the minimally required number of servers. (Recall that it even without the
robustness constraint, it is NP-hard to compute opt so we did not compute it for
the experiments.) We computed the “ideal” assignment by determining the minimum
number of servers needed to satisfy robustness alone and the minimum number of
servers to satisfy the storage constraints alone and taking the maximum of these two
values. I.e., the “ideal” number of servers is defined as: mink max{mr ,mc} where
mc = min{m : mC ≥ k

∑n
i=1 di } and mr = min{m : (m

k

) ≥ n}. We tested each
setting for 10 iterations and took the average of the results. Figures 4, 5, 6, 7 show
the results. The graphs show that for all settings, rff performs significantly better
than the dedicated system and almost as well as the ideal assignment. Specifically, the
worst (minimum) ratio (over all values of n) of servers used by the dedicated system
and rff is 2.40, 3.25, 3.57, and 3.57 for 64 GB, 128 GB, 256 GB, and 512 GB, so
rff always assigned apps more than twice as efficiently as a dedicated system. Note

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 5 Number of servers used when server capacity is 128 GB

Fig. 6 Number of servers used when server capacity is 256 GB

that as the server capacity increases, these ratios either increase or stay the same. The
average ratio of servers used by the dedicated system and rff always increase: 2.64,
4.72, 7.34, and 9.89 for 64 GB, 128 GB, 256 GB, and 512 GB, respectively, so rff on
average performed as much as 9 times as efficiently as a dedicated hosting.

Comparing rffwith the lower bound on optimal, we find that the worst (maximum)
ratio (over all values of n) of servers used by rff and the ideal assignment is 1.17, 1.21,

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 7 Number of servers used when server capacity is 512 GB

1.13, and 1.20 for 64 GB, 128 GB, 256 GB, and 512 GB, respectively. So rff always
used close to the same number of servers as an optimal solution. (The average ratios
are similar to these values.) The results indicate that when apps sizes are more realistic
than those described in Theorem 4 of Sect. 4.2.3, rff performs close to optimally.

6 Discussion and conclusions

We proposed a new model for assigning items of various types to containers such
that the system is robust. We presented an optimal poly-time algorithm in the setting
without capacity constraints on the containers. We also presented an optimal poly-
time algorithm when item sizes are uniform. Our main algorithm rff is a poly-time
2-approximation algorithm for the settingwhere item sizes are nonuniform.Our exper-
imental results suggest that when run on a simulated hosting platform, rff performs
well not only in the worst-case, but even more so on average.

In the lower bound instance, as d increases, it is not clear whether the corresponding
ratio is converging (very slowly) to 2 or to a number less than 2, or whether the ratio
converges at all; if the ratio does not converge, one can still ask for the limit supremum
of the sequence of ratios. If the limit supremum is 2, then the upper bound of 2 is tight.

One direction for future work is to determine whether there is an algorithm with an
approximation ratio better than 2. Also, our problemmodel assumes that the number of
items is uniform over all types. A natural extension of this work would be to consider
the case where this number is not required to be uniform.

Acknowledgements The authors would like to thank Samuel Barnes and Nate Devine for their helpful
corrections on an earlier version of this work.

123

Author's personal copy

Journal of Combinatorial Optimization

References

Chekuri C, Khanna S (2000) A PTAS for the multiple knapsack problem. In: Symposium on discrete
algorithms (SODA)

Epstein L, Levin A (2006) On bin packing with conflicts. In: Proceedings of the workshop on approximation
and online algorithms (WAOA)

Fleischer L, Goemans MX, Mirrokni VS, Sviridenko M (2006) Tight approximation algorithms for maxi-
mum general assignment problems. In: Proceedings of the symposium on discrete algorithms

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, New York

Jansen K (1999) An approximation scheme for bin packing with conflicts. J Comb Optim 3(4):363–377
Jansen K, Öhring S (1997) Approximation algorithms for time constrained scheduling. Inf Comput

132(2):85–108
Korupolu M, Rajaraman R (2016) Robust and probabilistic failure-aware placement. In: Proceedings of the

symposium on parallelism in algorithms and architectures (SPAA), pp 213–224
KorupoluM,MeyersonA, RajaramanR, TagikuB (2015) Robust and probabilistic failure-aware placement.

Math Program 154(1–2):493–514
Mills K, Chandrasekaran R, Mittal N (2017) Algorithms for optimal replica placement under correlated

failure in hierarchical failure domains. In: Theoretical computer science (pre-print)
RahmanR,BarkerK,Alhajj R (2008)Replica placement strategies in data grid. JGridComput 6(1):103–123
Shmoys D, Tardos E (1993) An approximation algorithm for the generalized assignment problem. Math

Program 62(3):461–474
Sperner E (1928) Ein Satz über Untermengen einer endlichen Menge. Math Z 27(1):544–548
Stein C, Zhong M (2018) Scheduling when you don’t know the number of machines. In: Proceedings of

the symposium on discrete algorithms (SODA)
Stirling J (1730)Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium.

London
Urgaonkar B, Rosenberg A, Shenoy P (2007) Application placement on a cluster of servers. Int J Found

Comput Sci 18(5):1023–1041

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy

	Robustly assigning unstable items
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Uncapacitated robust assignment problem
	3.2 Antichains

	4 The robust assignment problem with capacity constraints
	4.1 Uniform sizes
	4.1.1 Details for the case of uniform sizes

	4.2 Nonuniform sizes
	4.2.1 The robust first fit algorithm
	4.2.2 Upper bound
	4.2.3 Lower bound

	5 Experimental results
	6 Discussion and conclusions
	Acknowledgements
	References

