
1

A New Approach to Reliable Multi-Path
Provisioning

Ananya Das, Charles Martel, Biswanath Mukherjee, and Smita Rai
Department of Computer Science, University of California, Davis, CA 95616

Email: {das, martel, mukherje, rai}@cs.ucdavis.edu

Abstract—We study the problem of reliably provisioning traffic
in high-capacity backbone mesh networks supporting virtual
concatenation (VCAT). Traditional approaches handled reliability
requirements using protection schemes. Although protection
approaches offer high assurance, this assurance can be costly.
We take a less expensive approach to maintaining reliability by
offering an alternate guarantee. Specifically, our approach offers
expected bandwidth, rather than an absolute amount, but at lower
costs than full-protection approaches. We propose an improved
routing algorithm that uses minimum-cost flow to find efficient
collections of paths that satisfy traffic requests for expected
bandwidth. We find that in most realistic network settings, paths
are reliable enough so that only few additional network resources
are required to compensate for the bandwidth loss incurred from
possible network failures.

We investigate the performance of our algorithm under both
a uniform setting, with symmetric traffic distribution and equal
edge capacities, and in a more realistic setting with asymmetric
traffic and differing edge capacities. Results show that our
algorithm is an attractive approach in both the uniform and
non-uniform settings, and much more effective than previously
proposed schemes.

We also compare our approach to a full-protection approach.
Results show that by using fewer network resources, our algo-
rithm is able to satisfy significantly more traffic requests than
the full-protection approach. To get a broader view of how our
algorithm performs in networks with varying reliability levels,
we test our algorithm for both a network with highly reliable
edges and a network with less reliable edges. Results show that
our algorithm is very successful in both settings and performs
significantly better than the full-protection approach. Thus, when
full protection is not crucial, using our routing approach should
be beneficial.

I. INTRODUCTION

With the rise of critical Internet applications, satisfying
customer reliability requirements is becoming increasingly im-
portant. A common quality of service (QoS) metric is service
reliability. Reliability is measured by connection availability -
the probability that a connection will be found in the operating
state at a random time [1]. This probability is based on both
the likelihood of a failure and the time it takes to recover from
the failure.

Traditional approaches maintain reliability by using full-
protection mechanisms such as path protection [2], [3], [4], [5],
[6], [7] and path restoration [8], [9], [10], [11], [5]. Although
these approaches guard against connection failures, this assur-
ance can be rather expensive. Previous researchers have con-

This work has been supported by NSF Grant No. CNS-05-20190. A shorter
summarized version of this paper was presented at the IEEE Globecom
Conference in Nov. 2007.

sidered satisfying customer availability requirements using sin-
gle path routing schemes [12]. More recently, researchers have
explored next-generation networks, such as NG-SONET/SDH,
supporting virtual concatenation (VCAT) [13] which allows
connections to be provisioned on multiple paths [14]. Multi-
path routing has the obvious advantage of better fault tolerance
than single-path routing. Multi-path routing provides more
effective utilization of network resources, and relieves edge
congestion and delay. Since multiple paths usually exist in
backbone mesh networks, multi-path routing can offer more
flexibility to the network operator.

Since many decisions for network management must be
made in real time, efficient online schemes are essential. In
the online QoS provisioning problem that we study, a series
of bandwidth requests are issued dynamically and each request
must be reliably scheduled (or rejected) as it arrives. Once a
request has been scheduled, it cannot be rerouted. If a request
cannot be satisfied, it is rejected. In this setting, degraded
service [15] is acceptable. In other words, the customer is
willing to accept a small chance of failure or short time
periods of reduced bandwidth. Therefore, customer requests
are for an expected level of bandwidth rather than an absolute
amount. This approach may be useful in settings such as
video streaming, where buffering is allowed, and the requested
bandwidth is required over an extended period of time rather
than all at once. Therefore, intervals with high bandwidth
levels can compensate for intervals with lower service.

We propose a new online multi-path heuristic that solves this
bandwidth provisioning problem and significantly improves on
prior multi-path schemes [14]. While prior heuristics itera-
tively find separate good paths, we present a new approach
that finds paths that jointly make up the best set. We find
that in any realistic network setting, paths are reliable enough
so that only few additional network resources are required
to compensate for the bandwidth loss incurred from possible
network failures. Our algorithm takes advantage of this feature
and uses a minimum-cost flow in the network to find an
efficient collection of paths that meets the expected bandwidth
request. This method allows us to preserve network capacity
by consuming as little bandwidth as possible to satisfy a
request. We also present an improved version of this algorithm
which more effectively utilizes network bandwidth by adapting
to network contention. This technique may also improve other
routing algorithms by making them more adaptive to changing
network conditions.

We first investigate the performance of our algorithms under

2

a uniform setting with a symmetric traffic distribution and
equal edge capacities. We then extend our study to a non-
uniform setting with asymmetric traffic and differing edge
capacities. The latter results give us a better understanding
of how the algorithms would perform in practice. Our simula-
tion results show that by finding sets of paths that preserve
network capacity, our algorithm is highly successful. Our
algorithm performs significantly better than prior schemes in
both uniform and non-uniform settings. The improvement of
our algorithm over prior schemes in the non-uniform setting
indicates that our approach would be much more effective in
practical network settings.

As previously described, our algorithms are applicable in
settings in which the customers are willing to accept a small
chance of failure. Full-protection approaches take measures
to guard against any connection failures. However, protection
requires significant network resources which may result in
a decline in overall performance. On the other hand, our
algorithms satisfy connection requests while using noticeably
fewer resources than protection schemes. To understand the
cost of full protection on performance, we compared our
algorithms to an efficient full-protection multi-path algorithm
proposed in [16]1. This algorithm provides full protection
against edge failures by protecting each primary path with
an edge-disjoint backup path (we describe this algorithm in
more detail in Section IV-B). Although our approach does not
provide full protection, our simulation results show that it can
schedule more requests than the full-protection scheme. These
results verify that there exists a significant trade-off between
full protection and performance. Therefore, if a customer is
willing to accept a small chance of failure (or reduced service),
then using our approach would be beneficial.

To assess the effectiveness of our algorithms in networks
with varying reliability levels, we simulate both a network with
highly reliable edges and a network with moderately reliable
edges. Under both settings, we find that our approach is very
effective. For a typical US nationwide topology with reliable
edges and uniform traffic distribution, under a moderate load
of 300 Erlangs, our algorithm satisfies more than 99.3% of
the requests and more than 97% of the requested bandwidth.
Under a load of 270 Erlangs, our algorithm blocks less than
half the bandwidth blocked by the full-protection approach.

To summarize, the major contributions of this paper are as
follows:
• We present a new algorithm that solves the reliable

multi-path provisioning problem and outperforms previ-
ous approaches. Our algorithm uses a new approach that
seeks a target bandwidth which is slightly more than the
requested amount. It also aims to reduce the amount of
bandwidth consumed to satisfy requests.

• We also compare our algorithm to a full-protection ap-
proach, and demonstrate the benefits of our algorithm for
settings where degraded service is acceptable.

• We present an enhanced version of our algorithm which
better utilizes network resources and adapts to contention

1Two full-protection algorithms are proposed in [16]; our comparison is
with the PIVM (Protecting Individual VCG Member) algorithm.

by limiting the overuse of edges.
• We measure the performance of our algorithm under var-

ious network settings. We first consider a reliable setting
with uniform edge capacities and source-destination re-
quests. We also study a non-uniform setting with varying
edge capacities and source-destination requests. Finally,
we consider a less reliable network setting where edges
are more likely to fail.

The remainder of this paper is organized as follows:
Section II describes other reliability-aware provisioning ap-
proaches. Section III-A describes the QoS problem we are
investigating and presents our multi-path routing algorithms.
Sections IV-V provide our simulation results. Finally, Sec-
tion VI presents our conclusions.

II. RELATED WORK

Edge failures are the predominant type of failure in com-
munication networks. Node failures are relatively rare because
carrier-class nodes typically have their own failure-handling
mechanisms. Therefore, various routing schemes have been
proposed that maintain reliability by handling edge failures.

a) Path Protection and Restoration: There is an exten-
sive amount of literature on path protection [2], [3], [4], [16],
[5], [6], [7], and path restoration [8], [9], [10], [11], [5]. For a
thorough review of these techniques please refer to [17]. Path
protection, a proactive procedure in which spare capacity is
reserved during connection setup, can be employed to handle
network failures. A path that carries traffic during normal
operation is known as the primary path. When an edge on
the path fails, the connection is rerouted over an edge-disjoint
backup path. In dedicated path protection, a backup path
cannot be shared by multiple primary paths. However, in
shared protection, multiple primary paths may share a common
backup path if the primary paths are edge-disjoint.

Path restoration is a reactive procedure in which backup
paths are discovered after a failure occurs on a primary path.
Restoration schemes take more time to restore a connection
than protection schemes since recovery is performed after
the failure occurs. Therefore, for time-critical applications,
protection schemes are often a more attractive approach.

b) Multi-Path Routing: Multi-path routing offers more
fault tolerance and flexibility than single-path schemes and is
therefore an attractive approach for bandwidth provisioning.
The authors of [14] propose an online multi-path routing
scheme to solve the bandwidth provisioning problem for
the setting in which degraded service is acceptable (in Sec-
tion III-A, we describe the algorithm and this setting in more
detail). Given a source, destination, and bandwidth request,
this algorithm uses a “smart-greedy” approach to find a set
of paths that satisfies the request. The algorithm first selects
a “good” set of candidate edges. Among these edges, it
then iteratively looks for the highest availability path. One
drawback of this algorithm is that the highest availability path
may not always be the most effective choice. Furthermore,
this approach does not take full advantage of the multi-path
feature.

3

We propose a new multi-path heuristic to solve the band-
width provisioning problem. While the approach in [14] fo-
cuses on finding highly reliable edges, our algorithm exploits
the fact that in realistic networks, typically all edges are
reliable enough to satisfy requests. Our heuristic finds the best
set of paths to satisfy requests by seeking paths that minimize
the amount of bandwidth consumed from the network. It also
takes advantage of the multi-path feature by finding paths that
jointly make up the best set.

III. PROVISIONING EXPECTED BANDWIDTH PROBLEM

A. Problem Description and Statement

We refer to the multi-path provisioning problem that we
study as EXPBAND . In this problem, bandwidth requests are
issued dynamically and each request must be scheduled as it
arrives [14]. In this network setting, customers are willing to
accept a small chance or period of time of degraded service. In
other words, customers are satisfied with an expected level of
bandwidth, rather than an absolute amount. Each connection
request consists of a source, destination, and expected band-
width requirement. The goal of EXPBAND is to find a path or
set of paths from the source to the destination which satisfies
the bandwidth requirement.

We now provide the definition for expected bandwidth. Let
G = (V, E), be a directed graph where each edge e in E has an
availability a ∈ (0, 1) and a non-negative integer capacity. For
a path P in G, with k edges e1, e2, . . . ek, let a1, a2, . . . ak

denote the respective availabilities of these edges, where ai

is the probability that edge ei is properly operating. The
availability of path P is A = a1 ·a2 · . . . ·ak. Assuming that all
edges fail independently, A is the probability that P is properly
functioning. If the respective capacities of the edges of P are
c1, c2, . . . , ck then ci is the maximum amount of bandwidth
that can be allocated to edge ei and cmin = min1≤i≤k(ci)
is the maximum amount of bandwidth that can be allocated
along P . If we route b units2 of bandwidth on P , where
b ≤ cmin, then the expected bandwidth of P is A·b. Given a set
of paths π = {P1, P2, . . . , Pm} with respective availabilities
A1, A2, . . . , Am, if b1, b2, . . . , bm units of bandwidth are sent
along these paths, then the total expected bandwidth of π is∑m

i=1 Ai·bi. Note that the paths in π need not be edge-disjoint.

Problem Statement
The EXPBAND problem takes as input a directed graph G =

(V, E), where each edge in E has an availability a ∈ (0, 1)
and a non-negative integer capacity; and a connection request
< s, d, b >, where s, d ∈ V , s is the source node, d is the
destination node, and b is the expected bandwidth requirement.
The goal is to find a set of paths from s to d such that the
expected bandwidth (defined above) from s to d is ≥ b.

B. The Smart-Greedy Algorithm

Since even the off-line version of EXPBAND is NP-hard
(please see [14] for the proof of hardness), efficient heuristics

2One unit of bandwidth in a SONET-based network is STS-1 (≈ 51.84
Mbps).

Fig. 1. Sample network topology.

are needed to solve this problem. The authors of [14] devel-
oped a heuristic that we refer to as SMART-GREEDY, which
first finds a set of candidate “good” edges. Among these edges,
it then iteratively seeks the path of highest availability until
the set of paths found provides enough expected bandwidth
or until no more paths can be found. The algorithm outputs
a single path or set of paths that satisfies the expected band-
width request if one exists; otherwise the request is rejected
and no paths are assigned. The experimental network used
in [14] was a US nationwide network topology which resem-
bles a well-connected carrier’s backbone topology [18] (see
Fig. 1). The edges were bidirectional and edge availabilities
were uniformly distributed over the values [0.9999, 0.99999,
0.999999]. Since edge availabilities are less than 1, all path
availabilities will also be less than 1. Therefore, to satisfy an
expected bandwidth request of b units, it is always necessary
to consume at least b+1 units (we will show in Section III-C
that in this setting, exactly b + 1 units will be sufficient).

Figure 2 shows an example of the SMART-GREEDY ap-
proach. Edges on the graph that have a non-zero flow are
indicated by dashed lines and the flow amounts are shown
below the edges. The capacity on all the edges is 10 and the
availabilities on all edges except (s,a) and (s,b) is 0.999999.
Edge (s,a) has availability 0.99999 and edge (s,b) has avail-
ability 0.9999. For this example, suppose the request <s, d,
11>, has been issued3. Since all edge availabilities are less
than 1, a request for 11 units of expected bandwidth would
require at least 12 units of total bandwidth. SMART-GREEDY
will first choose the path with highest availability, s-c-g-h-d,
even though it is the longest path. It will send 10 units of flow
along this path. In the next iteration, it will choose path s-a-f-
d and send 2 units of flow along this path. However, this set
of paths is not the ideal set since the request can be satisfied
without using the longest path.

We found two drawbacks with the SMART-GREEDY heuris-
tic. First, the maximum availability path is not always the
shortest path4. Using the shortest path that satisfies the band-
width request usually allows us to consume the minimum
amount of network bandwidth required to satisfy the request.
Therefore, if a shorter path (which is slightly less reliable)
provides enough bandwidth for the given request, it should

3Assume that bandwidth need is deterministic so that all the bandwidth on
an edge can be used as in a time-division multiplexing (TDM) edge.

4The length of a path is the number of edges in the path.

4

Fig. 2. Example of SMART-GREEDY scheme. Each edge has capacity 10
units and the availabilities on all edges except (s,a) and (s,b) is 0.999999.
Edge (s,a) has availability 0.99999 and edge (s,b) has availability 0.9999. To
route request <s, d, 11>, SMART-GREEDY would consume 46 units.

be used over a longer path with higher availability. Second,
the SMART-GREEDY algorithm does not take full advantage of
the multi-path feature. In many cases, although the maximum
availability path may be the best single path, it may not be
part of a set of the best paths.

We propose a new heuristic to address the EXPBAND
problem. Our algorithm, MINCOST, takes advantage of the fact
that using shorter paths to satisfy each request will reduce the
amount of bandwidth consumed from the network (see Fig. 3).
It also exploits the use of multi-paths by finding the set of
globally optimum paths that satisfies the current bandwidth
request.

C. Satisfying Expected Bandwidth

While the SMART-GREEDY algorithm seeks the highest
availability path, our algorithm aims to find the shortest paths
that can satisfy the requests. Given the network settings used
in [14] (which are described as being similar to realistic ob-
served settings), this approach of not prioritizing availabilities
maintains practicality. In our experimental runs using the same
topology, we found that paths used to satisfy requests had
average length 3. A path of length 3, with each edge having
the lowest possible availability (0.9999), would have an overall
availability of 0.9999×0.9999×0.9999 = 0.9997, which is still
close to 1 (in Section V, we discuss a setting with lower edge
availabilities). For the settings used in [14], we find that to
satisfy b units of expected bandwidth, b + 1 units will always
be sufficient5. For example, if 192 units of bandwidth are
requested, and a path with availability 0.9997 is found, then by
retrieving 193 units of bandwidth from this path we will obtain
an expected bandwidth of 193×0.9997 = 192.9421, which
is more than enough to satisfy the request. The high edge
availabilities and the short path lengths that are characteristic
of the network topology generally allow for paths with high
availabilities. Therefore, for our network setting, retrieving one
additional unit of bandwidth is enough to compensate for the
bandwidth loss incurred from the fractional availabilities. The

5The maximum amount of bandwidth requested is 192 units. Therefore, as
long as the path length is less than k = log(0.9999)

192
193

= 51, b + 1 units
will be sufficient to satisfy a request for b units.

Fig. 3. Example of MINCOST scheme. Each edge has capacity 10 units
and the availabilities on all edges except (s,a) and (s,b) is 0.999999. Edge
(s,a) has availability 0.99999 and edge (s,b) has availability 0.9999. To route
request <s, d, 11>, SMART-GREEDY would consume 36 units.

SMART-GREEDY approach of finding highly reliable paths to
deal with this loss is rather unnecessary and can be avoided
by simply retrieving an additional unit of bandwidth. Further-
more, we found that in most realistic networks (see Section V),
paths are reliable enough so that only a few additional units
of bandwidth are required to satisfy requests.

D. The MINCOST Algorithm

Given a connection request, the MINCOST algorithm satis-
fies the request by finding a single path or set of paths that
will result in the minimum overall bandwidth consumption
from the network. The algorithm first sets the cost of each
edge in the underlying graph to 1. If edges e1, e2, . . . , ek with
costs w1, w2, . . . , wk are assigned new flows f1, f2, . . . , fk,
then the cost of this flow is

∑k
i=1wi·fi. Given a connection

request <s, d, b>, the MINCOST algorithm finds a single path
or set of paths that forms the minimum-cost flow from s to d
of value b + 1. As noted earlier, a flow of b + 1 will satisfy
this request. By finding the minimum-cost flow, we are able
to minimize the sum of the flows in all the edges used for this
request [19].

Figure 3 shows MINCOST’s approach for the previous ex-
ample. Assume the same edge availabilities and capacities,
and that the same request <s, d, 11> has been issued as in
Fig. 2. The MINCOST algorithm sends 10 units of flow along
path s-a-e-d, and 2 units along path s-b-f-d. Although both
SMART-GREEDY and MINCOST are able to satisfy the request,
MINCOST does so by consuming 10×3+2×3=36 units of band-
width whereas SMART-GREEDY consumes 10×4+2×3=46
units.

Note that in the same example, if a request for slightly
higher bandwidth, for example 22 units, had been issued
instead, MINCOST would satisfy it by sending 10 units along
path s-a-e-d, 10 units along path s-b-f-d and 3 units along
path s-c-g-h-d. However, SMART-GREEDY would reject this
request.

The steps of our algorithm are shown in Algorithm 1.
Our approach can be implemented efficiently using a simple
minimum-cost flow algorithm [19], and in our simulations the
average number of paths needed was only 1.2 (see Fig. 1).

5

Algorithm 1. MINCOST(< s, d, b >, G = (V, E), C : E → Z+, A :
E → (0, 1))

1: Assign each edge e ∈ E a cost w(e) = 1.
2: Find a single path or set of paths, π, that makes up the

minimum-cost flow from s to d of value b + 1.
3: if Such a set exists then
4: Reduce the capacity of every edge in π by its new flow.

Provisioning Successful.
5: else
6: Reject this request.
7: end if

Fig. 4. Subgraph of sample topology.

Although our algorithm requires a bit more computation
than MAXFLOW, our simulation6 results show that even with-
out any code optimizations, both algorithms take only a few
milliseconds to process a request. The difference in computa-
tion time is a small tradeoff for the performance improvements
achieved by MINCOST.

E. The MINCOSTADD Algorithm

Congestion is a common problem that arises when a series
of network requests is issued. Edges that lie on the shortest
path for many node pairs will be used frequently. To avoid
congestion, the use of these edges should be limited. For
example, in Fig. 4, edge (6, 11) lies on the shortest path
between several node pairs such as: 1 and 19, 1 and 20, and
6 and 19. In general, popular edges like (6, 11) should be
saved when it is still possible to efficiently (i.e., without using
significantly more edges) satisfy a request with a less popular
edge. If a request between nodes 1 and 12 was issued, then
to preserve bandwidth on edge (6, 11), path 1-6-9-12 should
be chosen over the path containing edge (6, 11).

This idea of preserving frequently accessed edges was our
motivation for modifying the MINCOST algorithm. In the
modified algorithm, MINCOSTADD, each time an edge is used,
we increase its cost. Therefore, popular edges will have higher
costs and will not be used when short alternate routes exist.
This modification produces improved performance with only
minor additional computational costs.

Adjusting the costs of edges allows us to easily tune the al-
gorithm based on the network topology and frequency of edge
accesses. This feature of the MINCOSTADD algorithm allows
it to better utilize network resources by adapting to changing
network conditions. This simple yet effective technique can
also improve other routing algorithms by making them more
adaptive [15].

6Our simulations were run on a personal computer with a 1.7-GHz Pentium
M processor and 2GB of RAM.

IV. ILLUSTRATIVE NUMERICAL RESULTS

A. Comparing to Smart-Greedy Algorithm

1) Uniform Setting: To evaluate the performance of our
algorithms, we first replicated the simulated dynamic net-
work environment used in [14]. We assume the network is
fully wavelength-convertible. The connection arrival process
is Poisson and the connection-holding time follows a neg-
ative exponential distribution with unit mean. There are 16
wavelengths per edge, and the capacity of each is OC-192
(≈10 Gbps), which is a realistic measure for today’s channel
speeds. The bandwidth distribution of the connection requests
is as follows: 52% of the requests are for 100 Mbps of
bandwidth, 21% are for 150 Mbps, 10% are for 600 Mbps,
10% are for 1 Gbps, 4% are for 2.5 Gbps, 2% are for 5 Gbps,
and the final 1% of requests are for 10 Gbps of bandwidth
(the bandwidth is assumed to occupy an integral number of
slots with STS-1 granulariy). This distribution follows typical
bandwidth distributions observed in realistic networks. As
in [14], we assume that the lowest traffic granularity is STS-
1, and therefore ignore connection requests with bandwidth
less than or equal to STS-1 since they cannot be efficiently
provisioned over multiple paths.

In the first set of simulations, we assume a uniform traffic
distribution over all node pairs. For these simulations, the
availability of edges were assumed to be uniformly distributed
over the values [0.9999, 0.99999, 0.999999]. We simulated
100,000 connection requests under these settings for various
load levels7. We tested each algorithm while varying the load
on the network from 100 Erlangs to 600 Erlangs.

We applied the MINCOST and MINCOSTADD algorithms and
compared their performance to the SMART-GREEDY algorithm.
We observed the fraction of unprovisioned bandwidth (band-
width blocking probability) and the fraction of unprovisioned
requests (probability of failure).

For all load levels, SMART-GREEDY is outperformed by
both of our algorithms. Our algorithms consistently provision
more bandwidth and satisfy a higher number of requests.
For moderate load (300 Erlangs), SMART-GREEDY blocks
16% of the requested bandwidth, MINCOST blocks 11%, and
MINCOSTADD blocks 9%. Therefore, MINCOST improves the
bandwidth blocking probability by 5% and blocks less than
70% of the bandwidth blocked by SMART-GREEDY . MIN-
COSTADD improves the bandwidth blocking probability by 7%
and blocks less than 56% (see Fig. 5) of the bandwidth blocked
by SMART-GREEDY . Under this load, SMART-GREEDY is 1.7
times more likely to fail than MINCOST and twice as likely
to fail than MINCOSTADD (see Fig. 6). Under a load of 200
Erlangs, our algorithms are almost always successful (at most
3 failures), whereas SMART-GREEDY has many more failures
(approximately 520). At low loads (100 Erlangs), our algo-
rithms are able to successfully provision all of the requested
bandwidth, whereas SMART-GREEDY is unsuccessful at times.

The results illustrate the effectiveness of our algorithms.
Even under a moderate load level (300 Erlangs), our algo-

7Load, measured in Erlangs, is defined as the product of the connection-
arrival rate, the average connection-holding time, and a connection’s average
bandwidth normalized in the unit of OC-192.

6

Fig. 5. Fraction of bandwidth blocked in uniform setting.

Fig. 6. Fraction of requests blocked in uniform setting.

rithms satisfy more than 99.3% of the requests and more than
97% of the requested bandwidth.

2) Non-Uniform Setting : Much of the published work in
routing studies assumes that requests are uniformly distributed
among all node pairs. In realistic networks, this assumption
clearly does not hold. Certain popular sites are more likely
to be selected for a connection request, whereas other sites
will be selected less frequently. To understand the relative
performance of SMART-GREEDY and our algorithms under
more realistic conditions, we ran simulations under a non-
uniform setting. We used the same network topology as in our

Fig. 7. Fraction of bandwidth blocked in non-uniform setting.

Fig. 8. Fraction of requests blocked in non-uniform setting.

uniform experiments. However, in this new setting, we placed
a bias on certain nodes by forcing them to be selected more
frequently for the s-d pairs. These biased nodes are referred
to as “large” nodes, and all other nodes are referred to as
“small”. We followed the guidelines suggested by the Defense
Advanced Research Projects Agency (DARPA) [20] model and
set 20% of the nodes to be “large”. For this set, we chose nodes
1, 3, 11, 21, and 22, since these nodes correspond to major
U.S. cities (see Fig. 1). The remaining 80% of nodes were
“small”. Following the guidelines, the traffic was distributed
as follows: 40% of the traffic was between two large nodes,

7

40% of the traffic was between a large node and a small node,
and the remaining 20% of the traffic was between two small
nodes.

Since network operators are likely to allocate more band-
width to edges that are adjacent to popular sites, we assigned
edges adjacent to large nodes twice as much bandwidth (32
wavelengths, each at ≈10 Gbps) as other edges. All other
settings in the non-uniform experiments were kept the same
as for the uniform case.

Figures 7 and 8 show our results under the non-uniform
setting. For simplicity, we only compare SMART-GREEDY to
MINCOSTADD since the latter consistently performs better
than MINCOST (however, both of our algorithms outperform
SMART-GREEDY). The performance of MINCOSTADD is still
impressive in this non-uniform setting. When the network is
considerably loaded (at 300 Erlangs), the algorithm success-
fully schedules more than 99% of the requests and 92% of
the requested bandwidth. MINCOSTADD’s ability to adapt to
varying edge demands accounts for its effectiveness in this
setting.

Our simulation results show that even in the non-uniform
setting, for all loads, MINCOSTADD performs better than
SMART-GREEDY. Studies done under purely uniform settings
may be misleading in measuring relative performance since the
uniformity assumption is usually unrealistic. Our results are
more convincing as they show that our algorithms are highly
effective in both uniform and non-uniform settings.

B. Comparing to Full Protection Algorithm
Our proposed algorithms handle failures by satisfying re-

quests for an expected level of bandwidth. These algorithms
are therefore useful in settings in which the user is willing
to accept a small chance of connection failure or reduced
bandwidth. Unlike path protection and path restoration, our
approaches do not provide full protection against single-edge
failures. If a failure occurs on an edge, the connection will con-
tinue at a reduced rate (if provisioned over multiple paths) or
be blocked for a short time (if provisioned over a single path)
until the edge recovers. In protection and restoration schemes,
backup paths are allocated for traffic to be rerouted in case
a failure occurs on a primary path. Although these schemes
offer high levels of assurance, this assurance comes at a cost.
Allocating backup paths for handling failures requires more
network resources, and can therefore be quite expensive. Even
when several primary paths share a backup path, significant
network resources are still required for the backup paths [16].
Furthermore, allocating edges for backup paths will prohibit
these edges from being used as primary paths. Since fewer
primary routing edges are available, full-protection schemes
have less flexibility for routing future requests.

Identifying the costs of full protection on performance can
help network providers determine their service and pricing
policies. If providing full protection causes a significant de-
cline in service, providers may decide to offer customers
expected bandwidth instead, at a lower cost. To get an un-
derstanding of how maintaining full protection affects per-
formance, we compared MINCOSTADD to a multi-path full-
protection algorithm proposed in [16]. Their heuristic provides

full protection against edge failures by protecting each primary
path with an edge-disjoint backup path. The heuristic achieves
high backup sharing by allowing primary paths to share the
backup capacity. More specifically, it achieves maximum intra-
connection sharing (multiple paths for one connection share
backup capacity) and very high inter-connection sharing (dif-
ferent connections between different node pairs share backup
capacity).

To compare MINCOSTADD to the full-protection algorithm,
we replicated the network environment used in [16], which
is similar to the previous network setting we simulated in
Section IV-A1. There are two differences between the setting
used in [16] and our previous simulation setting. First, in [16]
the bandwidth distribution (which does not ignore requests for
STS-1) is as follows: 51.5% of the requests are for 50 Mbps
of bandwidth, 25% are for 100 Mbps, 10% are for 150 Mbps,
5% are for 600 Mbps, 5% are for 1 Gbps, 2% are for 2.5 Gbps,
1% are for 5 Gbps, and the final 0.5% of requests are for 10
Gbps of bandwidth. This distribution also follows a typical
bandwidth distribution observed in realistic networks. Second,
in [16] the load varies from 170 Erlangs to 270 Erlangs. Since
the authors of [16] assume a uniform traffic distribution over
all node pairs, we follow this assumption for our simulations.

Figure 9 shows the comparison results. Again for simplicity,
we only show the results of MINCOSTADD since it consistently
performs better than MINCOST (although both algorithms out-
perform the full-protection algorithm). Even at high loads (270
Erlangs), MINCOSTADD blocks less than half the bandwidth
blocked by the full-protection algorithm. Specifically, at load
270 Erlangs, the full-protection algorithm blocks 15% of the
requested bandwidth while MINCOSTADD blocks less than 7%.
Therefore, MINCOSTADD improves the bandwidth blocking
probability by 8% and blocks less than 45% of the bandwidth
blocked by the full-protection algorithm. Furthermore, when
the load ranges from 170-190 Erlangs, MINCOSTADD success-
fully provisions all requests while the full-protection algorithm
has some failures.

C. Requests for Less than STS-1

As previously discussed, we replicated the network set-
ting used in [16] to compare MINCOSTADD with the full-
protection algorithm proposed in [16]. In this network set-
ting, the minimum granularity for transmittable bandwidth
is assumed to be STS-1 (≈ 50 Mbps). In the bandwidth
distribution used in this setting, more than half of the requests
are for STS-1. Since the MINCOSTADD always seeks one
additional unit of bandwidth than what is requested, it satisfies
requests for 1 unit by retrieving 2 units. This means that
for more than half the requests, MINCOSTADD provides twice
the bandwidth that is actually requested. Therefore, using this
bandwidth distribution to compare MINCOSTADD and the full-
protection algorithm yields results which are skewed against
MINCOSTADD.

Since the minimum granularity assumed in [16] is STS-
1, it is reasonable to presume that some requests that are
labeled as STS-1 requests may actually require less bandwidth
than this. Furthermore, if a network operator is willing to

8

Fig. 9. Fraction of bandwidth blocked (MINCOSTADD vs. full-protection
approach).

provide bandwidth amounts of less than STS-1 at a lower
cost, more customers may issue requests for less than STS-
1. An advantage of MINCOSTADD is that it may be able to
satisfy many of these requests by retrieving exactly one unit
of bandwidth. For example, suppose a request for 45 Mbps of
bandwidth (0.9 units) is issued. If MINCOSTADD finds a path of
length 3, with each edge having the lowest possible availability
(0.9999), then by sending 1 unit along this path, it will be
able to provide 0.9999 × 0.9999 × 0.9999 × 1 = 0.997 units
of expected bandwidth, which is more than enough to satisfy
the request. Although the full-protection algorithm could also
satisfy more requests in a setting in which some requests are
for less than STS-1, doing so would require complex grooming
techniques [21], [22].

To achieve a fairer comparison of MINCOSTADD and the
full-protection algorithm, we evaluated the two approaches
under a setting with bandwidth requests for less STS-1. More
specifically, for this setting, we assume that a third of the
requests are for 0.9 units of bandwidth8. Figure 10 compares
MINCOSTADD to the full-protection algorithm in this new
setting and the previous setting used in [16].

The results show that MINCOSTADD satisfies even more
bandwidth under this new setting. For example, at a moderate
load of 210 Erlangs, MINCOSTADD blocks less than 20% of
the bandwidth blocked under the original setting. At this same
load, MINCOSTADD blocks less than 5% of the bandwidth
blocked by the full-protection algorithm. These results show
that if some customers are content with less than 1 unit of
bandwidth, our algorithm can satisfy more customer requests
while using fewer network resources.

8Even if the minimum edge availability is 0.999, MINCOSTADD can satisfy
0.9 unit requests by retrieving 1 unit as long as the path length is less than
105.

Fig. 10. Fraction of bandwidth blocked (MINCOSTADD vs. full-protection
approach). Lowest curve represents performance of MINCOSTADD in the
setting with requests for less than STS-1.

V. LOWER AVAILABILITY SETTING

As previously described, the MINCOSTADD algorithm ig-
nores path availabilities when seeking paths to satisfy connec-
tion requests. As discussed in Section III-C, we can satisfy
a request for b units of expected bandwidth by retrieving
b + 1 units since our network setting assumes high edge
availabilities (uniformly distributed over [0.9999, 0.99999,
0.999999]). These high availabilities are found in realistic net-
works [14], however some networks may be less reliable [23].
In these networks, retrieving b+1 units may not be sufficient.
To understand how MINCOSTADD would perform in a less
reliable network setting, we simulated a network with lower
edge availabilities. More specifically, in this new setting, edge
availabilities were uniformly distributed among the values
[0.999, 0.9999, 0.99999]. Under this new setting, we first
compared MINCOSTADD to SMART-GREEDY and then to the
full-protection algorithm.

Using lower edge availabilities not only allows us to assess
the performance of our approach in a less reliable setting,
it also provides a less skewed comparison of the algorithms.
Although SMART-GREEDY does not perform as well as MIN-
COSTADD, it satisfies requests using the most reliable path(s)
that it finds. On the other hand, MINCOSTADD ignores the
reliability of the paths and aims to consume as little bandwidth
as possible. In a setting with high edge availabilities, our
approach is resource-efficient and effective. However, in a
less reliable network, ignoring edge availabilities may result
in connections which are not reliable enough for customer
standards. Similarly, although the full-protection algorithm
does not satisfy as many requests as our approach, it provides
full protection against single-edge failures. Therefore, this
less reliable setting provides a broader view of how our

9

Fig. 11. Fraction of bandwidth blocked: MINCOSTADD vs. SMART-GREEDY
in the less reliable network (uniform setting).

algorithm, which allows a small chance of failures, compares
to approaches which rarely or never allow failures.

A. Comparing to SMART-GREEDY

Under this less reliable setting, we first compare MIN-
COSTADD to SMART-GREEDY, assuming a uniform traffic
distribution and uniform edge capacities. Since in this setting
the availabilities of edges are lower, retrieving b + 1 units
of bandwidth may no longer satisfy a request for b units of
expected bandwidth. However, given our network topology
and bandwidth distribution (both of which are reflective of
realistic network settings) we found that at most b + 99 and
on average only b+1.16 units of bandwidth must be retrieved
in this less reliable setting.

Figure 11 shows the results of our simulations in this
setting. Although the network is less reliable in this setting,
MINCOSTADD is still able to perform significantly better
than SMART-GREEDY. Under moderate load (300 Erlangs),
MINCOSTADD blocks less than 60% of the bandwidth blocked
by the SMART-GREEDY algorithm.

Figure 12 shows the results of our simulations for the less
reliable network under a non-uniform setting. We assume the
same edge capacities and traffic distribution as described in
Section IV-A2. Under a load of 300 Erlangs, MINCOSTADD
blocks less than 54% of the bandwidth blocked by SMART-
GREEDY. Even under a much higher load of 600 Erlangs,
our algorithm still blocks less than 84% of the bandwidth
blocked by the prior algorithm. For this less reliable network,
our algorithm performs significantly better than the SMART-
GREEDY approach. Our results show that our algorithm’s
approach of ignoring availabilities and seeking paths that

9b+9 units are required for requests with the maximum bandwidth require-
ment of 192 units (10 Gbps) and a path of availability 0.95.

Fig. 12. Fraction of bandwidth blocked: MINCOSTADD vs. SMART-GREEDY
in the less reliable network (non-uniform setting).

minimize the bandwidth consumed is still effective in a less
reliable network setting.

B. Comparing to Full Protection
We now present our simulation results comparing MIN-

COSTADD to the full-protection algorithm in the less reliable
network setting. For this comparison, we assume that all re-
quests are for bandwidth at least STS-1 (Recall from Sec. IV-C
that this setting is skewed against our algorithm). Given the
network topology and the bandwidth distribution used in this
simulation, we found that at most b+9 and on average b+1.08
units must be retrieved to satisfy a request for b units of
expected bandwidth.

Figure 13 compares MINCOSTADD to the full-protection
algorithm for both the highly reliable and the less reliable
network settings. Note that since the full-protection algorithm
protects against failures regardless of the reliability of the
network, it will perform the same under both settings. The
results show that even in the less reliable network setting, for
all loads, MINCOSTADD is able to provision significantly more
bandwidth than the full-protection approach. For example, at
a low load (190 Erlangs) MINCOSTADD blocks only about
2% of the bandwidth blocked by the full-protection algorithm.
Even at the highest load shown (270 Erlangs), MINCOSTADD
blocks about half the bandwidth blocked by the full-protection
scheme. The graph also shows that MINCOSTADD’s perfor-
mance decline from the highly reliable setting to the less reli-
able setting is rather small. This indicates that the algorithm is
likely to perform well even for networks which are somewhat
unreliable.

VI. CONCLUSION

Our work presents a new online algorithm, MINCOSTADD,
for reliable mutli-path routing. Our algorithm is effective

10

Fig. 13. Fraction of bandwidth blocked: MINCOSTADD vs full-protection
algorithm in the less reliable network (uniform setting).

because it takes advantage of multi-path provisioning and
consumes as little bandwidth as possible from the network
per request. We found that in most realistic networks, paths
are reliable enough that only few additional bandwidth units
are required to compensate for the bandwidth loss incurred
from edge failures. Taking advantage of this feature further im-
proves the performance of our algorithm. The ability of MIN-
COSTADD to adapt to different network topologies and varying
edge contention levels allows it to be very successful, even
under a non-uniform setting. For the topology we used (which
was a typical US nationwide topology), with symmetric traffic
and edge capacities, under a moderately heavy load (300 Er-
langs), MINCOSTADD successfully scheduled more than 99.3%
of the requests and more than 97% of the requested bandwidth.
Results show that the MINCOSTADD algorithm has significant
performance improvements over previous approaches in both
uniform and non-uniform settings. The improvement in the
non-uniform setting indicates that MINCOSTADD would be
more effective if used in practice.

We also compared our approach to a fully-protected scheme.
Although full-protection algorithms provide more assurance
against network failures, this assurance comes at a cost. More
specifically, we find that there is a trade-off between full
protection and performance. Although our algorithm does
not provide full protection, it uses fewer network resources,
and can therefore satisfy more requests than a full-protection
approach. For settings in which full protection is not crucial,
it may be beneficial to use our approach since it offers
significantly higher performance.

REFERENCES

[1] M. Clouqueur and W. Grover. Availability Analysis of Span-Restorable
Mesh Networks. IEEE J. on Selected Areas in Communications, vol. 20,
no. 4, pp. 810-821, May 2002.

[2] A. Chakrabarti and G. Manimaran. Reliability Constrained Routing in
QoS Networks. IEEE/ACM Transactions on Networking, vol. 13, no. 3,
pp. 662-675, June 2004.

[3] A. Fumagalli, I. Cerutti, and M. Tacca. Optimal Design of Survivable
Mesh Networks Based on Line Switched WDM Self-Healing Rings.
IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp. 501-512,
June 2003.

[4] L. Guo, H. Yu, and L. Li. A New Path Protection Algorithm for
Meshed Survivable Wavelength-Division-Multiplexing Networks. Net-
working ICN 2005, vol. 3420, pp. 68-75.

[5] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, Survivable WDM
Mesh Networks, IEEE/OSA Journal of Lightwave Technology, vol. 21,
no. 4, pp. 870-883. April 2003.

[6] Y. Xiong, D. Xu, and C. Qiao. Achieving Fast and Bandwidth-Efficient
Shared-Path Protection. Journal of Lightwave Technology, vol. 21, no.
2, pp. 2683-2693, Feb. 2003.

[7] W. Yao and B. Ramamurthy. Survivable Traffic Grooming with Path
Protection at the Connection Level in WDM Mesh Networks. Journal
of Lightwave Technology, vol. 23, no. 10, pp. 2846-2853. Oct. 2005.

[8] B. Doshi, S. Dravida, P. Harshavardhana, O. Hauser, and Y. Wang,
Optical Network Design and Restoration. Bell Labs Technical Journal,
vol. 4, pp. 58-84, Mar. 1999.

[9] D. Gao and H. Zhang. Routing Pre-Configuration for Fast and Scalable
Path Restoration in DWDM Networks. Photonic Network Communica-
tions, vol. 12, no. 3, pp. 321-327, Dec. 2006.

[10] R. Iraschko and W. Grover. A Highly Efficient Path-Restoration Protocol
for Management of Optical Network Transport Integrity. IEEE Journal
on Selected Areas in Communications, vol. 18, no. 5, pp. 779-794, May
2000.

[11] S. Norden, M. Buddhikot, M. Waldvogel, and S. Suri. Routing
Bandwidth-Guaranteed Paths with Restoration in Label-Switched Net-
works. Proceedings of Computer Networks, vol. 46, no. 2, pp. 197-218,
2004.

[12] J. Zhang, K. Zhu, H. Zang, N. Matloff, and B. Mukherjee. Availability-
Aware Provisioning Strategies for Differentiated Protection Services in
Wavelength-Convertible WDM Mesh Networks. IEEE/ACM Transac-
tions on Networking, vol. 15, no. 5, pp. 1177-1190, Oct. 2007.

[13] ITU-T Recommendation. Network Node Interface for the Synchronous
Digital Hierarchy (SDH). ITU-T Recommendation G.707, December
2003.

[14] S. Rai, O. Deshpande, C. Ou, C. Martel, and B. Mukherjee. Reliable
Multi-Path Provisioning for High-Capacity Backbone Mesh Network.
IEEE/ACM Transactions on Networking, vol. 15, no. 4, pp. 803-812,
Aug. 2007.

[15] A. Das, C. Martel, B. Mukherjee. A Partial-Protection Approach Using
Multipath Provisioning. IEEE International Conference on Communica-
tions., June 2009.

[16] C. Ou, L. Sahasabuddle, K. Zhu, C. Martel, and B. Mukherjee. Surviable
Virtual Concatenation for Data Over SONET/SDH in Optical Transport
Networks. IEEE/ACM Transactions on Networking, vol. 14, pp. 218-231,
Feb. 2006.

[17] W. Grover. Mesh-Based Survivable Networks: Options and Strategies
for Optical, MPLS, SONET and ATM Networking. Prentice Hall PTR,
Upper Saddle River, New Jersey, 2003.

[18] K. Zhu, H. Zang, and B. Mukherjee. A Comprehensive Study on Next-
generation Optical Grooming Switches. IEEE Journal on Selected Areas
in Communications., vol. 21, no. 7, pp. 1173-1186, Sep. 2003.

[19] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[20] http://www.darpa.mil/sto/solicitations/CORONET/pip.htm
[21] F. Farahmand, X. Huang, and J. Jue. Efficient Online Traffic Grooming

Algorithms in WDM Mesh Networks with Drop-and-Continue Node
Architecture. Proceedings of BroadNets 2004. Oct. 2004.

[22] J. Hu and B. Leida. Traffic Grooming, Routing and Wavelength Assign-
ment in Optical WDM Mesh Networks. IEEE INFOCOM. Mar. 2004.

[23] Alcatel-Lucent. Network Availability in Meshed Transport Net-
works. Whitepaper. http://www1.alcatel-lucent.com/com/en/appcontent/
opgss/Net\ Avail\ Meshed\ twp\ tcm228-1283621635.pdf

