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Abstract. We consider a variant of the offline Dial-a-Ride problem with
a single server where each request has a source, destination, and a revenue
earned for serving it. The goal for the server is to serve requests within
a given time limit so as to maximize the total revenue. We consider
the uniform-revenue variant (equivalent to maximizing the number of
requests served), whose applications include paratransit services. We first
show that no polynomial-time algorithm can be guaranteed to earn the
optimal revenue, even when the time limit for the algorithm is augmented
by any constant factor ¢ > 1. We present an algorithm, k-Sequence, that
repeatedly serves the fastest set of k remaining requests, and provide
upper and lower bounds on its performance. We show k-Sequence has
approximation ratio at most (2 + [A]/k) and at least 1 + \/k, where A
denotes the ratio between the maximum and minimum distances in the
graph, and that 1+ \/k is tight when 1+ A/k > k. Thus, for the case of
k =1, i.e., when the algorithm repeatedly serves the quickest request, it
has approximation ratio 1+ A, which is tight for all A. We also show that
even as k grows beyond the size of A, the ratio never improves below 9/7.

1 Introduction

In the Dial-a-Ride Problem (DARP) one or more servers must schedule a collec-
tion of pickup and delivery requests, or rides. Each request specifies the pickup
location (or source) and the delivery location (or destination). In some DARP
variants the requests may be restricted so that they must be served within a
specified time window, they may have weights associated with them, or details
about them may be known only when they become available. For most variations
the goal is to find a schedule that will allow the server(s) to serve requests within
the constraints, while meeting a specified objective. Much of the motivation for
DARP arises from the numerous practical applications of the transport of both
people and goods, including delivery services, ambulances, ride-sharing services,
and paratransit services.

The Dial-a-Ride Problem (DARP) is well-studied with many variants includ-
ing multiple vehicles, capacitated vehicles, and whether the requests are issued
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ahead of time (offline) or on-the-fly (online). For a comprehensive overview of
DARP please refer to the surveys The dial-a-ride problem: models and algo-
rithms [8] and Typology and literature review for dial-a-ride problems [11].

In this work we study offline DARP on weighted graphs with a single server
where each request has a source, destination, and priority. The server has a
specified deadline after which no more requests may be served, and the goal is
to find a schedule of requests to serve within the deadline that maximizes the
total priority. We assume uniform priorities so the goal is equivalent to maxi-
mizing the number of requests served within the deadline. A request’s priority
may represent the importance of serving the request in settings such as courier
services. In more time-sensitive settings such as ambulance routing, the priority
may represent the urgency of a request. In profit-based settings, such as taxi
and ride-sharing services, a request’s priority may represent the revenue earned
for serving the request. The uniform priority variant in this work is useful for
settings where all requests have equal priorities such as not-for-profit services
that provide transportation to elderly and disabled passengers and courier ser-
vices where deliveries are not prioritized. It also applies when revenue-based
systems like Uber and Lyft are employed in dense geographic regions where re-
quests have similar service times and therefore yield similar revenues. For the
remainder of this paper, we will refer to the priority as “revenue,” and to this
revenue-maximization time-limited variant of the problem as RDARP.

One problem that is closely related to our work is the Prize Collecting Trav-
eling Salesperson Problem (PCTSP) where the server earns a revenue (or prize)
for every location it visits and a penalty for every location it misses, and the
goal is to collect a specified amount of revenue while minimizing travel costs
and penalties. PCTSP was introduced by Balas [4] but the first approximation
algorithm, with ratio 2.5, was given by Bienstock et al. [5]. Later, Goemans and
Williamson [10] developed a primal-dual algorithm to obtain a 2-approximation.
A few years later, Awerbuch et al. [3] gave the first PCTSP approximation al-
gorithms with polylogarithmic performance. Several years later, building off of
the work in [10], Archer et al. [2] improved the ratio to 2 — ¢, a significant result
as the barrier of 2 was thought to be unbreakable [9].

To our knowledge, despite its relevance to modern-day transportation sys-
tems, aside from our work in [1], the revenue-maximizing time-limited version
of DARP we investigate in this paper has not been previously studied in the
offline setting. However, recently, Paul et al. [12, 13] studied a special case of our
problem in which each request has the source equal to the destination; namely,
they study the budgeted variant of PCTSP where the goal is to find a tour that
maximizes the number of vertices visited given a bound on the cost of the tour.
They present a 2-approximation when the graph is not required to be complete
and the tour may visit nodes more than once.

Blum et al. [6] has also presented the first constant-factor approximation
algorithm for the Orienteering Problem where the input is a weighted graph
with rewards on nodes and the goal is to find a path that starts at a specified
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origin and maximizes the total reward collected, subject to a limit on the path
length.

1.1 Our results

In Section 2 we begin by revisiting the Segmented Best Path (sBP) algorithm
that we proposed in [7] for RDARP in the online setting. We show that SBP in
the offline setting is a 4-approximation. We note that this is a tight bound as
the lower bound of 4 we established in [7] for the online setting carries over to
the offline setting.

In Section 3 we prove that no polynomial-time algorithm can be guaranteed
to earn as much revenue as the optimal revenue, even when the time limit 7" for
the algorithm is augmented by c¢ for any constant ¢ > 1.

In Section 4 we present our main result: k-Sequence (k-SEQ), a family of algo-
rithms parameterized by k, for RDARP on weighted graphs and uniform revenues.
Informally, the k-SEQ algorithm repeatedly serves the fastest set of k£ remain-
ing requests where a determination of fastest is made by considering both the
time to serve the requests and any travel time necessary to serve those requests.
Naturally, k is a positive integer. We let A\ = ty00/tmin, Where €y, and a0
denote the smallest and largest edge weights in the graph, respectively (note
that in many real-world settings, A may be viewed as a constant). We prove that
k-SEQ has approximation ratio (2 + [A]/k). In Section 4.1 we show that when
14+ Ak > k, the approximation ratio for k-SEQ improves to (1 + A/k). Thus,
for the case of £ = 1, i.e., where the algorithm repeatedly serves the quickest
request and therefore runs in polynomial time, the approximation ratio is 1+ A
and this is tight.

Finally, in Section 5, we show that k-SEQ has approximation ratio at least
1+ A/k, which matches the upper bound for when 1 + A/k > k. We also show
that the algorithm has a lower bound of 9/7 for k£ > A.

2 Preliminaries

We formally define RDARP as follows. The input is an undirected complete graph
G = (V,E) where V is the set of vertices (or nodes) and E = {(u,v) : u,v €
V,u # v} is the set of edges. For every edge (u,v) € E, there is a distance
dist(u,v) > 0, which represents the amount of time it takes to traverse (u,v).¥
One node in the graph, o, is designated as the origin and is where the server is
initially located (i.e. at time 0). The input also includes a time limit 7" and a set
of requests, S, that is issued to the server. Since we focus here on the uniform-
revenue variant of RDARP, each request in S can be considered as simply a pair

TWe note that any simple, undirected, connected, weighted graph is allowed as
input, with the simple pre-processing step of adding an edge wherever one is not present
whose distance is the length of the shortest path between its two endpoints. We further
note that the input can be regarded as a metric space if the weights on the edges are
expected to satisfy the triangle-inequality.
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(s,d) where s is the source vertex or starting point of the request, and d is
the destination vertex. We note that our problem is a generalization of budgeted
PCTSP [12, 13]; while TSP has as input a set of points/cities to visit, our problem
has a set of requests, each with two distinct points to be visited, a source and a
destination. To serve a request, the server must move from its current location
x to s, then from s to d, and remains at d until it is ready to move again. The
total time for serving the request is dist(x, s) + dist(s,d), where dist(x,s) = 0
ifx =s.

Every movement of the server can be characterized as either an empty drive
which is simply a repositioning move along an edge but not serving a request,
or a service drive in which a request is being served while the server moves. We
let driveTime(C') denote the minimum total time for the server to travel from
its current location and serve the set of requests C', where the minimum is taken
over all permutations of the requests in C'. We simplify it to driveTime when
the set in consideration is clear from context.

With uniform revenues, the total revenue earned is equivalent to the number
of requests served, and we thus use |ALG(I)| to denote the revenue earned by an
algorithm ALG on an instance I of uniform-revenue RDARP, and we drop the [
when the instance is clear from context. Similarly we use |0PT(I)| for the number
of requests (or revenue) earned by the optimal solution OPT on instance I.

2.1 The SBP algorithm

Building upon prior work in DARP, we now analyze the SBP (SEGMENTED BEST
PATH) algorithm proposed in [7] for the online variant of DARP with non-uniform
revenues. Since our problem assumes uniform revenues, we unsurprisingly have
a tighter upper bound, but note that the lower bound carries over.

Algorithm 1: Algorithm SEGMENTED BEST PATH (SBP) from [7]. In-
put: origin o, time limit 7" > 0, a complete graph G with maximum edge
distance T/ f, and a set of requests S given as source-destination pairs.

1: Let t1,t2,...ts denote the time 8: if R is non-empty then
segments ending at times 9: Move to the source location
T/f,2T/f,..., T, respectively. of the first request in R.

2: Let 1 =1. 10: At the start of ¢;41, serve

3: if f is odd then requests in R.

4: At t1, do nothing. Increment ¢ = 2. 11: else

5: end if 12: Remain idle for ¢; and ¢;41

6: while i < f do 13:  end if

7 At the start of t;, find the 14:  Leti=1i+ 2.

mazx-revenue-request-sequence, R. 15: end while
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As described in Algorithm 1, the algorithm starts by splitting the total time
T into f segments each of length T'/f (where f is fixed and 1 < f < T). At the
start of a time segment, the server determines the max-revenue-request-sequence,
R, i.e. the maximum revenue-earning sequence of requests that can be served
within one time segment, and moves to the source of the first request in this
set. During the next time segment, it serves the requests in this set. It continues
this way, alternating between determining and moving to the source of the first
request in R during one time segment, and serving the requests in R in the next
time segment. Please refer to [7] for full details on how the algorithm finds R.

Let opT(S,T,0) and sSBP(S,T,0) denote the schedules returned by opT and
SBP, respectively, on the instance (5,7}, 0).

Theorem 1. |0PT(S,T,0)| < 4|sBP(S, T, 0)| for any instance (S, T, 0) of uniform-
revenue RDARP.

Proof. We first note that the lower bound instance in [7] for the online setting
also applies to this offline setting; in that instance, SBP earns a revenue of no
more than OPT/4.

For the upper bound, consider a schedule OPTs, which is identical to OPT
except it is allowed one extra empty drive at the start that does not add to the
overall time taken by the algorithm. More formally, if the first move in OPT is
from o to some node ny, then OPTy may have an additional (non-time-consuming)
move at the start such that its first move is from o to some other node n} and
its second move is from n} to n;. Since OPTy is allowed one additional empty
drive, we know |0PT2(S,T,0)| > |oPT(S,T,0)|. We claim that |[sSBP(S,T,0)| >
1/4|0PT2(S, T, 0)|, which implies that |[SBP(S,T,0)| > 1/4|opT(S, T, 0)|.

We proceed by strong induction on the number of time windows w = [f/2]
where a time window is two consecutive time segments. For the base case let )
and R denote the set of requests served by OPTy and SBP, respectively, in the
first time window and let ¢ and r denote their respective revenues. By the greedy
nature of SBP, if ¢ = 1, then r = ¢; if ¢ > 1, since SBP serves requests during
only every other time segment, then r > ¢/2 if ¢ is even, and r > (¢ — 1)/2 if ¢
is odd. So if w =1, then r > ¢/4, completing the base case.

For the inductive step, let P denote the path traversed by OPTs, let p =
|oPTy| > |oPT| denote the number of requests served in P, and let u denote
the first node OPTy visits after the end of the first time window. Consider the
subpath, P’, of P that starts at u. Since P may contain a request that straddles
the first two windows, P’ contains at least p— (¢+ 1) requests. Let s; denote the
last node SBP visits before the start of the second time window. After the first
window, SBP is left with a smaller instance of the problem (Spew, Tnew, Onew)
where Spew =S — R, Thew =T —T/f, and 0pey = s1. So P’ contains at least
p—(q+1)—r requests from this smaller instance and OPT3 on (Syew, Thew, Onew)
can move from o, to u and serve these requests to earn revenue at least
p— (¢ + 1) — r. By induction, on the smaller instance sBP will have revenue at
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least (p — ¢ — 1 —r)/4. Thus

|SBP(S, T, 0)| = r + |SBP(Shew, Tnews Onew)| =1+ (p—q—1—1)/4
>p/d+(—q—1+3r)/4. (1)

There are three cases for ¢ and r.

1. Case: ¢ >5
Then since r > (¢ — 1)/2, from (1) we have:
[SBP(S, T, 0)] = p/d+ (~q — 1+ 3(q — 1)/2)/4 > p/d+ (a/2 — 5/2)/4 > p/4.

2. Case: g<4andr >2
From (1) we have: |sBP(S,T,0)| > p/4+ (-4 —1+6)/4 > p/4.

3. Case: g<4andr<1
If r = 0, then |SBP(S, T, 0)| = |0oPT2(S, T, 0)| = 0, so the theorem is trivially
true, therefore, we assume r = 1. We first show by contradiction that every
time window in OPT5’s schedule has fewer than 4 requests that end in that
window. Suppose there is a window ¢ in OPTy’s schedule that has 4 or more
requests that end in window ¢. Then there are at least 3 requests that start
and end in window ¢. This implies that at least one time segment of window
i contains at least 2 requests which, by the greediness of SBP, implies r >
2, which is a contradiction since we are in the case where r = 1. Let w’
denote the number of windows in which OPT; serves at least 1 request.
We have |oPT2(S,T,0)| < 4w’ and [sBP(S,T,0)| > min(w,|S|) > (w'), so
|sBP(S,T,0)| > 1/4|oPT2(S, T, 0)|. |

3 c-Time Inapproximability

We now prove that no polynomial-time algorithm can be guaranteed to earn
as much revenue as the optimal revenue, even when the time limit 7" for the
algorithm is augmented by a constant factor. Let I = (G, 0,T') denote an instance
of RDARP, where G is the input graph, o is the set of requests, and T is the time
limit. We define ALG to be a p-time-approximation if ALG earns revenue at least
OPT on the instance (G, o, pT). Portions of this proof are inspired by the NP-
hardness proof of RDARP with uniform revenues provided in [1].

Theorem 2. If P # NP, then there is no polynomial-time c-time-approximation
to RDARP for any constant ¢ > 1.

Proof. We will show that a polynomial-time c-time-approzrimation to RDARP
yields a polynomial-time decider for the directed Hamiltonian path problem
(HAMPATH for short).

Given a directed HAMPATH input G = (V, E) where n = |V|, we build an
instance I for RDARP as follows. First, construct a complete graph G’ with 2n+2
nodes (see Figure 1; while G’ is a complete graph, we show only the edges of
interest, omitting those with distance ¢(2n+ 1) + 1): one node will be the server
origin o, one will be a designated “sink” node ¢, and the other 2n nodes are as
follows. For each node v € V, create a node v’ and a node v’ in G’. Four types



Serving rides of equal importance for budgeted Dial-a-Ride 7

|

Fig. 1. An example instance G of HAMPATH where n = 5 (left), and the graph G’ of
the corresponding instance for RDARP where T = 2n + 1 (right). Four types of edges
have distance 1: (1) all edges (v',v"), (2) for any (u,v) € G, the edge (u”,v"), (3) for
all nodes v’ in G, the edge (0,v), and (4) for all nodes v"’ in G’, the edge (v",t). All
other edges to make the graph complete (not shown) have distance ¢(2n + 1) + 1 for
some ¢ > 1.

of edges have distance 1 in G’: (1) all edges (v/,v"), (2) for any (u,v) € G, the
edge (u”,v"), (3) for all nodes v' in G’, the edge (0,v"), and (4) for all nodes v"
in G’ the edge (v”,t) . All other edges have distance ¢(2n+1)+1 for some ¢ > 1.
For o, create a RDARP request in G’ from node v’ to node v for each v € V,
which we will refer to as a node-request. Further, for each edge (u,v) € E, create
a RDARP request from node «” to node v in G’, which we will refer to as an
edge-request. Additionally, for each v € V| create an edge-request from v to the
designated sink node t in G’. Let I = (G',0,T = 2n+1).

By way of contradiction, we assume there is a c-time-approximation for
RDARP called ALG and let I’ = (G',0,¢T = ¢(2n + 1)) be an instance of
RDARP where G’ and o are as described above. We claim ALG can be used
as a polynomial-time decider for HAMPATH; specifically, G has a Hamiltonian
path if and only if ALc(I’) > 2n

Suppose ALG(I") > 2n. Consider a sequence of 2n requests in G’ that takes
time at most ¢(2n + 1). Note that any such sequence may not contain any of
the edges with distance ¢(2n + 1) + 1. Further note that by construction of G,
any such sequence of RDARP requests must alternate between node-requests and
edge-requests, where any edge to the sink is counted as an edge-request (and
must be a terminal request). Since destinations in G’ can be partitioned into the
sink, single-primed nodes, and double-primed nodes, we can thus analyze the
three possibilities for the destination of the final RDARP request.

If either the sink or a single-primed node is the destination for the final
RDARP request, the RDARP sequence must end with an edge-request. The alter-
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nating structure ensures the RDARP sequence begins with a node-request, and
contains exactly n node-requests and n edge-requests. If a double-primed node
is the destination for the final RDARP request, the RDARP sequence must end
with a node request. The alternating structure ensures the RDARP sequence be-
gins with an edge-request, and contains exactly n edge-requests and exactly n
node requests. Thus, the RDARP sequence always contains n node requests. This
ensures that the length n path in the original graph G includes all n vertices in
the original graph G, and thus the existence of a Hamiltonian path. This shows
ALG(I") > 2n implies the existence of a Hamiltonian path in G.

For the other direction of the proof, we show that if there is a Hamiltonian
path in G then ALc(I’) > 2n. Let p = (v1,va,...,v,) be a Hamiltonian path in
G. Construct the sequence of 2n RDARP requests in G’ by the node request from
v} to v, the edge-request from v{ to vj, the node request from v} to v}, the
edge-request from v} to v4, and so forth, through the edge-request from v/_; to
v),, the node request from v/, to v//, and finally the edge-request from v!! to the
designated sink ¢. The entire sequence takes time 2n + 1, so opT(I) = 2n. By
definition of a c-time-approzimation, this implies that ALG(I") > 2n. [ |

4 k-Sequence upper bound

We now present k-Sequence (k-SEQ), our family of algorithms parameterized by
k, for uniform-revenue RDARP (see Algorithm 2).

Algorithm 2: Algorithm k-Sequence (k-SEQ). Input: origin o, time limit
T > 0, a complete graph GIl, and a set of requests S given as source-
destination pairs.
1: Set t:=1T.
2: while there are at least k requests left to serve do
3:  Let C be the collection of k requests with fastest driveTime(C), where
driveTime(C) denotes the minimum total time to serve C.
if t > driveTime(C) then
Serve C, update t :=t — driveTime(C), and update S =S — C.
else
Exit while loop.
end if
end while
: Find the largest © < k — 1 s.t. driveTime(C’) < ¢t for some C’ with |C'| = z.
: If|C'| # 0, serve C.

i A

—

II'We note again that any simple, undirected, connected, weighted graph is allowed
as input, with the simple pre-processing step of adding an edge wherever one is not
present whose distance is the length of the shortest path between its two endpoints.
We further note that the input can be regarded as a metric space if the weights on the
edges are expected to satisfy the triangle-inequality.
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The algorithm repeatedly serves the fastest set of k remaining requests where
a determination of fastest is made by considering both the time to serve the
requests and any travel time necessary to serve those requests. If there are fewer
than k requests remaining, the algorithm determines how to serve all remaining
requests optimally. If the remaining time is insufficient to serve any collection of
k requests, the algorithm simply serves the largest set of requests that can be
served within the remaining time. The algorithm runs in time polynomial in the
number of requests but exponential in k since it must find all request sequences
of length k.

Theorem 3. k-SEQ is a (24 [\]/k)-approzimation for uniform-revenue RDARP.

Proof. First, note that without loss of generality, we may assume that it is
possible to serve k requests during the allotted time T'. If there was insufficient
time to serve any collection of k requests, then k-SEQ will serve the largest set
of requests that can be served within time 7', which is thus optimal. If there
are fewer than k requests available, k-SEQ will serve all available requests, again
achieving an optimal solution.

We now proceed with a proof by induction on an instance in which at least
k requests can be served in time T'. For the base case, we have |T/t,nin] = 0, so
T < tmin and thus k-SEQ and OPT both serve 0 requests, so we are done. For the
inductive case, let |T/tmin] = d > 1. Suppose by induction that the theorem is
true whenever |1/t | < d.

Let s = o be the start location. k-SEQ starts by serving exactly k requests
in time 77, ending at a location we refer to as s1. Let OPT serve m requests in
total. Note that since T} is, by construction of k-SEQ, the time required to serve
the fastest k requests, OPT serves at most k requests during the initial 77 time.

Let 3" be the location on the OPT path at time T3, noting that ¢’ need not
be at a node. Then define y to be 3 if 3 is a node, or the next node on OPT’s
path after y’ otherwise.

To develop our inductive argument, we will now create a new instance with
new start location s, time T},., =T — T7, and the k requests that were served
by k-SEQ removed from S, leaving us with Syeq.

We consider P, a feasible path for this new instance (see Figure 2). This
path P starts at sj, proceeds to y, and then traverses as much as it can of
the remainder of the original OPT path from y in the remaining time, that is
T — Ty —dist(s1,y) > T —T1 — tmaz.™ Since such a path P is feasible, OPT’s
path must contain at least as many requests as P. Observe that the segment of
the OPT path that P uses from y onward has a distance of at most T"— T7.

Since P has time at least T — T7 — tq, left when at y, then P misses at
most (T'—T1) — (T — T1 — tmaz) = tmaz time of the tail of the original opT

**Note that when the graph is complete, tmaz (tmin) is the maximum (minimum)
distance over all pairs of nodes. When the graph is not complete, then using the pre-
processing described in the previous footnote, we have that the distance between any
two non-adjacent vertices is the shortest distance between those vertices, and tmaz
(tmin) is the maximum (minimum) distance over all of these distances.
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path in addition to missing the initial 77 time of the head of the original opT
path. Thus, P misses at most k requests from the head of the original OPT path
and at most [A] from the tail of the original OPT path, ensuring that P serves
at least m — k — [A] requests from the original instance. Since the new instance
had k requests from the original instance removed, we can now say that P serves
at least m — 2k — [\] requests from the new instance. Naturally, OPT must also
serve at least m — 2k — [A] requests on the new instance.

Note tmin and tp,q., and therefore A, remain the same in the new instance.
The allotted time for the new instance is Tpew = T — 11 < T — tymin, giving
L(T = T1) /tmin] < [(T — tmin)/tmin] = |T/tmin] — 1. Hence by induction, the
theorem is true for this new instance. In other words, the number of requests
served by k-SEQ on the new instance is at least k/(2k + [A]) times the number
of requests served by OPT on the new instance. Thus, |k-SEQ(S,T,0)| = k +
|k-SEQ(Shew, Tnew, $1)| = k+k/(2k+[A])(m =2k —[X]) > k+km/(2k+[\])+
k(—=2k — [X])/(2k + [A]) = k/(2k + [A])m, completing the induction. [ |

k-sequence serving first k requests

OPT on the original graph

path P for the new instance

OPT serves up to k requests in time T,

OPT serves up to I'A1 requests that P misses

Fig. 2. An illustration of the paths taken by OPT and k-SEQ in Theorem 3. T3 is the
time needed for k-SEQ to serve its initial group of k requests, ending at si. The first
node on the path of OPT after time 77 is y. A feasible path P starting at time 77 is from
s1 to y and then proceeds to the right. (It is possible for s1 and y to be collocated.)

4.1 k-Sequence upper bound for large A\

We will now show for sufficiently large constant A, the k-SEQ algorithm is a
(1 + A\/k)-approximation, which is a better ratio than the result obtained in
Theorem 3 for sufficiently large A. However, Theorem 3 remains better when
24+ Nk <k.

Theorem 4. For any instance I of uniform-revenue RDARP, |OPT(I)| < max{(1+
M E)|k-SEQ(I)|+A(k—1)/k+1, k|k-sEQ(I)|+k}. Le., when 1+ A/k > k, we have
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10PT()] < (1 + A/k)|k-sEQ(I)| + max{A(k — 1)/k, k}, so k-SEQ is a (1+ A/k)-

approximation in this case.

Proof. Let m = |opT|, and n = |k-SEQ|. Suppose that m < kn + k. Then
|OPT| < kn+k = k|k-SEQ| +k, giving our desired result. Thus, for the remainder
of the proof, we assume that m > kn + k, and proceed to show that |OPT| <
(1 4+ N/k)|k-sEQ| + A(k —1)/k + 1.

Let the opT path serve, in order, requests r1,79,...,7,, whose respective
service times are yi,¥2,...,¥m. Let z; be the time taken by an empty drive
required between request 7;_; and request 7; for 2 < j < m, and let z; be the
time taken to get from the origin to request 7. Note that any x; may be 0.
Thus, the driveTime taken by the OPT path is:

Ti+yr+xety2+ o+ Ty Yy <1 (2)

Let 41, "ma2, - . - be some fixed arbitrary labeling of the requests not served
by opT. Now we consider the k-SEQ algorithm and denote the requests served by
k-SEQ as rqa,y; . .., Ta, - Denote by ¢ the number of times that k-SEQ searches for
the fastest sequence of k requests to serve; since revenues are uniform, ¢ = [n/k].
Then n = k(g — 1) + p for some 1 < p < k.

By Lemma 2 in the Appendix, we can find ¢ — 1 disjoint subsequences of k

consecutive integers from {1,...,m}, and a ¢th disjoint subsequence of p con-
secutive integers from {1,...,m}, i.e. for i; = 1 we have:

7;1,...77:14*]{371, ey iq_l,...,iq_1+k'71, ’iq,...,iqﬁ*p*l
where

{Z'j,...,ij +k— 1}0{@1,...,ak(j,1)} =, for 2 <j<q-1,
{ij, iy +p—=1 0 {an,...,ap-1)} =0, for j =gq.

Since both k-SEQ and OPT start at the same origin, the greedy nature of
k-SEQ ensures the time k-SEQ spends on its first set of k requests, including any
empty drives to those requests, is at most z1 + y1 + - - - + xx + Y. By Lemma 2
we know {i;,...,i; +k — 1} is disjoint from {ay,..., 1)}, so for the jth
set of k requests with 2 < j < ¢ — 1, the path resulting from going to requests
{Tij,...,riﬁk,l} is available and so by the greedy nature of k-SEQ, the time
spent by k-SEQ is at most ez + Yi; + Ti; 41 + 0+ Yij4k—1, SiNCe tpap is the
maximum time needed to get to request r;,. And finally by the same reasoning
the time spent by k-SEQ on the last set of p requests, still including any drives
to those requests, is at most tpqez + ¥i, + Ti,41 + - + Yi,+p—1. Thus, the total
time spent by k-SEQ is at most

To :=(¢— Dtmae +x1 + 91+ -+ 21+ yi
.
+ > (Wi, +xijp1+ -+ Yijeh-1) F i, FTigr1 + o+ Yigrp—1- (3)
2

j=

—
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Now, let 75 be any request served by OPT where J is not any of the indices
appearing in the right hand side of (3). If Ty + tyae + ys < T, then k-SEQ
could have served another request, a contradiction. Therefore, we must have
To + tmaz +ys > T. Combining this observation with (2), we have:

qg—1
(@ = Dtmaz +x1 +y1+--+ a2 +yr + Z(yij + T+ Yirk-1) T i,
j=2
+xiq+1+"'+yiq+p71+tmax+y‘] > xq +y1++xm+ym (4)

By construction, in the left hand side of (4), the z terms all have distinct
indices, the y terms all have distinct indices, and these terms also appear on the
right hand side.

Let Z be the set of these indices on the left hand side. So Z C {1,...,m}.
Then subtracting these terms from both sides of the equation yields

Gtmaz > x5+ > {zjij€{l,...mPNI}+> {y;:5€{l,....,mN\T}
> {yjje{l,....m\I}. ()

Since |Z| = n+1, there are m —n — 1 of the y; terms on the right hand side.
Since each y; > tmin, we have ¢tmez > (M —n — D)tpi,. Thus gA >m —n — 1.
Because ¢ = [n/k], then ¢ < (n+k—1)/k. Then m < (n+k—1DA/k+n+1<
14+ MEk)n+ Ak —1)/k+ 1 as desired. |

Note that for k = 1, k-SEQ is the polynomial time algorithm that repeatedly
finds and serves the quickest request. From Theorem 4 (in this section) and
Theorem 5 (in the next section), we have the following corollary regarding this
algorithm.

Corollary 1. 1-SEQ (i.e., k-SEQ with k = 1) has approximation ratio 1 + X,
which is tight for all X (see Figure 3 for an illustration of the lower bound).

5 k-Sequence lower bound

In this section, we present lower bounds on k-SEQ; specifically, the lower bound
is A+1 for k = 1, shrinking to 2 for kK = A, and shrinking further towards 9/7 for
k > A. We note that Theorem 5 matches the upper bound of Theorem 4 when
1+ Nk >k

Theorem 5. The approximation ratio of k-SEQ has lower bound 1+ A\/k.

Proof. Consider an instance (see Figure 3 for the case of k = 1) where there are
two “paths” to follow, both a distance of A\ away from the origin: one long chain
of T requests, which is the path chosen by the optimal solution, and another
“broken” chain that consists of k sequential requests at a time with a distance
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Fig. 3. The instance described in Theorem 5 when & = 1. Note that the graph is
complete but only relevant edges are shown.

of X from the end of each chain to any other request in the instance (similar to
the instance of Figure 3, but instead of single requests, they now occur in chains
of length k). The algorithm may choose to follow the path of the broken chain,
serving k requests at a time, but being forced to move a distance of A between
each k-chain. In this manner, for every k requests served, the algorithm requires
k + A units of time, while the optimal solution can serve k requests every k time
units (after the first A time units). Thus the approximation ratio of k-SEQ is at
least 1+ A\/k. |

We now show, however, that as k grows relative to A the ratio of k-SEQ
improves but does not reach (or go below) 9/7.

Theorem 6. The approzimation ratio of k-SEQ has lower bound no better than
9/7 for any k > \.

Proof. Refer to the instance in Figure 4, with vertices: o, a9, a1,...,ar, bktr+1,
..., br. The distances are: o is A away from every vertex, d(a;_1,a;) = 1 for all
i=1,...,L, and d(a;,b;) = d(b;,a;) =1 for all i = K + XA+ 1,..., L. All other
distances are A\.The requests are: (a;—1,7) for ¢ = 1,..., L (the “spine”), (a;, b;)
and (b;,a;) fori =k+A+1,k+A+2,...,L (a “loop”). Note there are no loops
fori<k+ A
OPT serves all requests via the path o, a9, a1,a2,. .., tx, Gkt r+1, Dktrt1,

At Ak 1> Okt At+25 Dkt A42s -, ar. This earns revenue L+2(L—k—\) = 3L—2A—2k
in time A+3L—2\—2k = 3L — A —2k. Meanwhile, k-SEQ will serve the path that

begins with the segment o,ar_k,ar_ky1,--.,ar, followed by an empty drive to
the segment ar_ok,ar—2xk+1,---,aL—k, followed by an empty drive, and so on,
until the final segment of k requests ag, a1, ..., ak-

Note that because 2k > A, then d(ar,ap—2r) = A. So the entire k-SEQ path
then takes total time (A+k)L/k since there are L/k segments, and k-SEQ initially
earns L revenue during these (A + k)L/k units of time. There is time remaining,
namely 7V = 3L — A —2k — (A + k)L/k = 3 — (A + k)/k)L — X\ — 2k. Since
k > A\/2, we have (A + k)/k < 3, so T" is positive for large enough L. There are
now disconnected two-cycles (a;, b;), (b;, a;) for i = A+ k+1, ..., L left for k-SEQ.
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Fig. 4. Top: An instance where OPT earns no less than 9/7 the revenue of k-SEQ.
Bottom: A depiction of the top instance illustrating the path taken by k-SEQ. k-SEQ
starts at o, proceeds to serve the k requests from ar_x to ar, and then spends time
moving to ar_2x to serve the next collection of k requests, continuing similarly until
the time limit. Note that in both figures the graph is complete but only relevant edges
are shown.

With time T” left, k-SEQ is now at aj. Note that these are all distance \ away
from ay. There are two cases based on the parity of k.

— k is even. Moving to the group (i.e. a sequence of k requests consisting of
k/2 consecutive two-cycles)

{(ai,bi),(bi,ai) fori:j,...,j+k/2—1} (6)

for any j with k + A+ 1< j < L —k/2+1 earns k revenue in time k + \ +
k/2 —1 = A+ 3k/2 — 1 because of the required empty drive of time A to
get to the first request and the (k/2 — 1) empty drives between the k/2 two-
cycles. Then k-SEQ from aj, would move to this group with j = L —k/2+1,
followed by this group with j = L — k + 1, and so on, subtracting k/2 from
j each time. Thus k-SEQ earns T"k/(A + 3k/2 — 1) additional revenue in the
remaining time 7T”; note for simplicity we can choose L so that T’k is evenly
divisible by (A + 3k/2 —1).

— k is odd. The behavior of k-SEQ is similar to the even k case except that in
each iteration, k-SEQ serves (k — 1)/2 two-cycles and one additional request
(please see the Appendix for details).

/1. _ _ —Ak2
In both cases, k-SEQ earns a total of (/\ing/Q'fl) = (7kL(3i€r2ili>\2) 45 Then
—L is 5. As L grows, this approaches ===5=*. Note tha
Jor s GLCAOBD A L grows,this approaches E Note that

because A > 1 and k > 1, this ratio is > 9/7; thus 9/7 is a lower bound. [ |
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Note that when & < X\, Theorem 5 gives a lower bound of 1 + A\/k > 2; so we
have a lower bound of 9/7 for any k, A.

Observe that if we let N denote the maximum number of requests that can
be served within time ¢,,4., then it is possible to show that our upper bound
theorems above hold with A replaced by N + 1 and the lower bound theorems
hold with A replaced by N. Note that NV < A; the hypothetically modified upper
bound theorems would be improvements in the case where N +1 < A. As a final
remark, we could have defined t,,;, as the minimum request service time when
there is at least one request, leaving t,,4, as the maximum edge weight, and the
theorems above would still hold.
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6 Appendix

6.1 Proofs for Section 4

The following lemmas are used for the proof of Theorem 4.

Lemma 1. Suppose we have d disjoint ordered sequences, some which may be
empty, consisting of b elements in totality and are given c elements, some of
which may not occur in the d sequences. If for some h, b > ch + dh —d + 1,
then there exists a subsequence of h consecutive elements in one of the sequences
which does not include the indicated c elements.

Proof. Note that if one or more of the ¢ elements is not in any of the d ordered
sequences, then we would just ignore them and the resulting set of elements to
avoid would be smaller so the inequality in the lemma would still be satisfied.
So for simplicity, in this proof we assume the ¢ elements to be avoided are inside
the set of b elements.

First we prove the case of d = 1. The ¢ elements partition the one given
sequence into (¢ 4+ 1) subsequences (some possibly empty). If, by way of con-
tradiction, each of these subsequences has length h — 1 or less, then the total
number of elements is at most (¢ + 1)(h — 1) + ¢ = ch + h — 1, a contradiction
since we are given b > ch + h, completing the proof for the case of d = 1.

Now we prove the general case. Let the d subsequences be B,..., By and
suppose the ¢ elements are distributed as sets C1, ...,y inside these. Suppose
by way of contradiction that |B;| < |C;|h+h—1 for each j. Then summing these
inequalities yields

d d
b= 1Bl <> (IC)lh + h—1) = ch+d(h—1) < ch+dh—d+1,
j=1 j=1

a contradiction. Hence |B;| > |Cj|h + h for some j and the first case of d =1
implies that this B; contains the desired subsequence of h consecutive elements.
|

Lemma 2. Let m > nk+k, g = [n/k|, and n = k(q— 1) + p. Note this implies
1 < p < k. Suppose we have a sequence a, . ..,q, of distinct integers. We can
find ¢ —1 disjoint subsequences of k consecutive integers from {1,...,m}, and a
qth disjoint subsequence of p consecutive integers from {1,...,m}, i.e. we have:

i17...,i1+k—17 ey iq_l,...7iq_1+k—1, iq,...7iq+p—1 (7)
such that i1 = 1 and we have

{ij, ...,ij + ]C — 1} N {Oél,. . -aak(j—l)} = @, fOT’ 2 S] S q— 1, (8)
{ij, ...,7:]' +p— 1} N {0&1, .. '70416(]’71)} = @, forj =q. (9)
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Proof. Set i, = 1. We now proceed to show how we can choose 74, then i,_1,
and so forth, down to i5. We need to enforce that the iy,...,i, € {1,...,m}
are distinct and that the conclusion ((8) and (9)) of the lemma are true. We
start by choosing i, so that the length-p sequence {ig,...,iq+ p — 1} avoids
{ai, ... a1} and {i1,...,ix} = {1,...,k}. That is, we want to choose p
consecutive integers from {k + 1,...,m} (which has size m — k) while avoiding
those in {a1,...,agg-1)} (Which has size k(¢ — 1)). We apply Lemma 1 with
d=1and b=m—k and ¢ = (¢ — 1)k = n — p. Since m > kn + k, we have that
m—k > kn > kn—p(p—1) > pn—p?>+p = p(n—p)+p, ensuring that b > pc+p,
and thus that there is a set of p consecutive integers in {k + 1,...,m} such that
(8) is satisfied.

Having chosen an acceptable ¢,, we now proceed to choose an 4, such that

{ig=1,- . yigm1+ k=1 C{k+1,...,mPN\{ig,...,ig +p—1}

avoids {au,...,apg—2)}. Note that since {i4,...,i, + p — 1} is a sequence of
consecutive integers, {k+1,...,m}\{iq,...,iq+p—1} consists of two sequences
(one possibly empty) of consecutive numbers. Thus we can apply Lemma 1 with
d=2,b=m—k—p, c=k(q—2) and h = k. We calculate that ch+dh—d+1 =
k2 (q—2)+2k—2+1 = k?q—2k*>+2k—1 = k?>q— (k—1)>—k* andb=m—k—p >
nk+k—k—p = (k(¢g—1)+p)k—p = k*q—k*+p(k—1). Since b > k?q—k*+p(k—1)
and p(k—1) > 0> —(k—1)?, we have b > k*¢— (k—1)2 - k* =ch+dh—d+1
and so by Lemma 1, there exists an i,_; that we desire.

We similarly obtain i4_»,...,%2 and the corresponding collections of consec-
utive requests. In each step, d increases by 1, b decreases by k and c¢ decreases
by k, so that that for finding iq—; (where 1 < j < ¢ —2), we have d = j + 1,
b=m—p—jk, c=k(qg—j—1). We just need to verify the hypothesis of Lemma 1
to finish this proof. We have ch+dh—d+1 = k?(¢—j—1)+(+1)k—(j+1)+1 =
k2q+j(—k?*+k—1)—k?>+k = k?q—j(k—1)?>—jk—k?+k whereas b = m—p—jk >
nk+k—p—jk=(k(g—1)+pk—p—jk+k=k>q—k>+p(k—1)—jk+k.
It is now clear that b > ch + dh — d + 1, and the proof is complete. |

6.2 Proof of odd case for Section 5

Specifically, k-SEQ from aj would move to the group of k requests

{(a;,b;),(bj,a5), (@41, 0541), (bj+1, aj41)s - -5 (@ (k—1)/2-1, bt (k1) /2-1)
(bj+(k—1)/2—1a aj+(k—l)/2—l)7 (aj+(k—1)/27 bj+(k—l)/2)}
where we here set j = L — (k — 1)/2. This earns revenue k in time A + k +

(k—1)/2 = A+ 3k/2 — 1/2. But the next group of k requests would be (still
setting j = L — (k — 1)/2, and continuing from b, (1_1)/2):

{(bj—(k—l)/Qa aj—(k—l)/2)7(aj—(k—1)/2+la bj—(k—l)/2+1)a (bj—(k—l)/2+1a aj—(k—l)/2+1)a
(aj—(k=1)/2425bj—(k—1)/242), - - -» (bj—1,@5-1) }.
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This group earns revenue k in time k+ A+ (k —1)/2 — 1 = A + 3k/2 — 3/2.
Together these two sequences earn revenue 2k in time 2\ + 3k — 2. Then k-SEQ
repeats these two sequences with j decreasing by k each time until time runs
out. Thus k-SEQ earns 172k /(2\ 4+ 3k — 2) additional revenue in the remaining
time T”. Note this is identical to the case of k even.



