
New Bounds for Maximizing Revenue in Online
Dial-a-Ride

Ananya Christman1[0000−0001−9445−1475], Christine Chung2[0000−0003−3580−9275],
Nicholas Jaczko1, Tianzhi Li1, Scott Westvold1, Xinyue Xu1, and David Yuen3

1 Middlebury College, Middlebury, VT 05753, USA achristman@middlebury.edu
2 Connecticut College, New London, CT 06320, USA cchung@conncoll.edu

3 92-1507 Punawainui St. Kapolei, HI 96707, USA yuen888@hawaii.edu

Abstract. In the Online-Dial-a-Ride Problem (OLDARP) a server trav-
els to serve requests for rides. We consider a variant where each request
specifies a source, destination, release time, and revenue that is earned
for serving the request. The goal is to maximize the total revenue earned
within a given time limit. We prove that no non-preemptive deterministic
online algorithm for OLDARP can be guaranteed to earn more than half
the revenue earned by opt. We then investigate the segmented best
path (sbp) algorithm of [8] for the general case of weighted graphs. The
previously-established lower and upper bounds for the competitive ratio
of sbp are 4 and 6, respectively, under reasonable assumptions about
the input instance. We eliminate the gap by proving that the competi-
tive ratio is 5 (under the same assumptions). We also prove that when
revenues are uniform, sbp has competitive ratio 4. Finally, we provide a
competitive analysis of sbp on complete bipartite graphs.

1 Introduction

In the On-Line Dial-a-Ride Problem (OLDARP), a server travels through a
graph to serve requests for rides. Each request specifies a source, which is the
pick-up (or start) location of the ride, a destination, which is the delivery (or
end) location, and the release time of the request, which is the earliest time the
request may be served. Requests arrive over time; specifically, each arrives at
its release time and the server must decide whether to serve the request and
at what time, with the goal of meeting some optimality criterion. The server
has a capacity that specifies the maximum number of requests it can serve at
any time. Common optimality criteria include minimizing the total travel time
(i.e. makespan) to satisfy all requests, minimizing the average completion time
(i.e. latency), or maximizing the number of served requests within a specified
time limit. In many variants preemption is not allowed, so if the server begins to
serve a request, it must do so until completion. On-Line Dial-a-Ride Problems
have many practical applications in settings where a vehicle is dispatched to
satisfy requests involving pick-up and delivery of people or goods. Important
examples include ambulance routing, transportation for the elderly and disabled,

2 A D Christman et. al

taxi services including Ride-for-Hire systems (such as Uber and Lyft), and courier
services.

We study a variation of OLDARP where in addition to the source, destination
and release time, each request also has a priority and there is a time limit within
which requests must be served. The server has unit capacity and the goal for
the server is to serve requests within the time limit so as to maximize the total
priority. A request’s priority may simply represent the importance of serving the
request in settings such as courier services. In more time-sensitive settings such
as ambulance routing, the priority may represent the urgency of a request. In
profit-based settings, such as taxi and ride-sharing services, a request’s priority
may represent the revenue earned from serving the request. For the remainder
of this paper, we will refer to the priority as “revenue,” and to this variant of
the problem as ROLDARP. Note that if revenues are uniform the problem is
equivalent to maximizing the number of served requests.

1.1 Related work

The Online Dial-a-Ride problem was introduced by Feuerstein and Stougie [10]
and several variations of the problem have been studied since. For a compre-
hensive survey on these and many other problems in the general area of vehicle
routing see [12] and [16]. Feuerstein and Stougie studied the problem for two dif-
ferent objectives: minimizing completion time and minimizing latency. For mini-
mizing completion time, they showed that any deterministic algorithm must have
competitive ratio of at least 2 regardless of the server capacity. They presented
algorithms for the cases of finite and infinite capacity with competitive ratios of
2.5 and 2, respectively. For minimizing latency, they proved that any algorithm
must have a competitive ratio of at least 3 and presented a 15-competitive algo-
rithm on the real line when the server has infinite capacity. Ascheuer et al. [2]
studied OLDARP with multiple servers with the goal of minimizing completion
time and presented a 2-competitive algorithm. More recently, Birx et al. [5] stud-
ied OLDARP on the real line and presented a new upper bound of 2.67 for the
smartstart algorithm [2], which improves the previous bounds of 3.41 [14] and
2.94 [4]. For OLDARP on the real line, Bjelde et al. [6] present a preemptive
algorithm with competitive ratio 2.41. The Online Traveling Salesperson Prob-
lem (OLTSP), introduced by Ausiello et al. [3] and also studied by Krumke [15],
is a special case of OLDARP where for each request the source and destina-
tion are the same location. There are many studies of variants of OLDARP and
OLTSP [3, 11, 13, 15] that differ from the variant that we study which we omit
here due to space limitations.

In this paper, we study OLDARP where each request has a revenue that
is earned if the request is served and the goal is to maximize the total revenue
earned within a specified time limit; the offline version of the problem was shown
to be NP-hard in [8]. More recently, it was shown that even the special case of
the offline version with uniform revenues and uniform weights is NP-hard [1].
Christman and Forcier [9] presented a 2-competitive algorithm for OLDARP
on graphs with uniform edge weights. Christman et al. [8] showed that if edge

New Bounds for Maximizing Revenue in Online Dial-a-Ride 3

weights may be arbitrarily large, then regardless of revenue values, no deter-
ministic algorithm can be competitive. They therefore considered graphs where
edge weights are bounded by a fixed fraction of the time limit, and gave a 6-
competitive algorithm for this problem. Note that this is a natural subclass of
inputs since in real-world dial-a-ride systems, drivers would be unlikely to spend
a large fraction of their day moving to or serving a single request.

1.2 Our results

In this work we begin with improved lower and upper bounds for the competitive
ratio of the
segmented best path (sbp) algorithm that was presented in [8]. We study sbp
because it has the best known competitive ratio for ROLDARP and is a relatively
straightforward algorithm. In [8], it was shown that sbp’s competitive ratio has
lower bound 4 and upper bound 6, provided that the edge weights are bounded
by a fixed fraction of the time limit, i.e. T/f where T is the time limit and
1 < f < T , and that the revenue earned by the optimal offline solution (opt) in
the last 2T/f time units is bounded by a constant. This assumption is imposed
because, as we show in Lemma 1, no non-preememptive deterministic online
algorithm can be guaranteed to earn this revenue. We note that as T grows,
the significance of the revenue earned by opt in the last two time segments
diminishes.

We then close the gap between the upper and lower bounds of sbp by provid-
ing an instance where the lower bound is 5 (Section 3.1) and a proof for an upper
bound of 5 (Section 3.2). We note that another interpretation of our result is
that under a weakened-adversary model where opt has two fewer time segments
available, while sbp has the full time limit T , sbp is 5-competitive. We then
investigate the problem for uniform revenues (so the objective is to maximize
the total number of requests served) and prove that sbp earns at least 1/4 the
revenue of opt, minus an additive term linear in f , the number of time segments
(Section 4). This variant is useful for settings where all requests have equal pri-
orities such as not-for-profit services that provide transportation to elderly and
disabled passengers and courier services where deliveries are not prioritized.

We then consider the problem for complete bipartite graphs; for these graphs
every source is from the left-hand side and every destination is from the right-
hand side (Section 5). These graphs model the scenario where only a subset of
locations may be source nodes and a disjoint subset may be destinations, e.g.
in the delivery of goods from commercial warehouses only the warehouses may
be sources and only customer locations may be destinations. We refer to this
problem as ROLDARP-B. We first show that if edge weights are not bounded
by a minimum value, then ROLDARP on general graphs reduces to ROLDARP-
B. We therefore impose a minimum edge weight of kT/f for some constant k such
that 0 < k ≤ 1. We show that if revenues are uniform, sbp has competitive ratio
d1/ke. Finally, we show that if revenues are nonuniform sbp has competitive ratio
d1/ke, provided that the revenue earned by opt in the last 2T/f time units is
bounded by a constant. (This assumption is justified by Lemma 1 which says no

4 A D Christman et. al

Competitive ratio ρ of SBP for ROLDARP

Uniform Revenue Nonuniform Revenue

Weighted graphs ρ = 4†‡ ([8], [this work]) ρ = 5† [this work]

Weighted bipartite graphs ρ ≤ d1/ke§ [this work] ρ ≤ d1/ke†§ [this work]

Table 1: Bounds on the algorithm sbp for ROLDARP variants. † This upper bound
assumes the optimal revenue of the last two time segments is bounded by a constant. ‡
This upper bound assumes the number of time segments is constant. § k is a constant
where 0 < k ≤ 1 such that the minimum edge weight is kT/f where T is the time limit
and 1 < f < T .

non-preemptive deterministic algorithm can be guaranteed to earn any fraction
of what is earned by opt in the last 2T/f time units.) Table 1 summarizes our
results.

2 Preliminaries

The Revenue-Online-Dial-a-Ride Problem (ROLDARP) is formally defined as
follows. The input is an undirected complete graph G = (V,E) where V is the
set of vertices (or nodes) and E = {(u, v) : u, v ∈ V, u 6= v} is the set of edges. For
every edge (u, v) ∈ E, there is a weight wu,v > 0, which represents the amount
of time it takes to traverse (u, v). 4 One node in the graph, o, is designated as
the origin and is where the server is initially located (i.e. at time 0). The input
also includes a time limit T and a sequence of requests, σ, that are dynamically
issued to the server.

Each request is of the form (s, d, t, p) where s is the source node, d is the
destination, t is the time the request is released, and p is the revenue (or priority)
earned by the server for serving the request. The server does not know about a
request until its release time t. To serve a request, the server must move from its
current location x to s, then from s to d. The total time for serving the request
is equal to the length (i.e. travel time) of the path from x to s to d, and the
earliest time a request may be released is at t = 0. For each request, the server
must decide whether to serve the request and if so, at what time. A request
may not be served earlier than its release time and at most one request may be
served at any given time. Once the server decides to serve a request, it must do
so until completion. The goal for the server is to serve requests within the time
limit so as to maximize the total earned revenue. (The server need not return to
the origin and may move freely through the graph at any time, even if it is not
traveling to serve a request.)

4 We note that any simple, undirected, connected, weighted graph is allowed as input,
with the simple pre-processing step of adding an edge wherever one is not present
whose weight is the length of the shortest path between its two endpoints. We further
note that the input can be regarded as a metric space if the weights on the edges
are expected to satisfy the triangle-inequality.

New Bounds for Maximizing Revenue in Online Dial-a-Ride 5

Algorithm 1: Algorithm Segmented Best Path (sbp). Input is com-
plete graph G with time limit T and maximum edge weight T/f .

1: Let t1, t2, . . . tf be the time segments ending at times T/f, 2T/f, . . . , T , resp.
2: Let i = 1.
3: if f is odd then
4: At t1, do nothing. Increment i = 2.
5: end if
6: while i < f do
7: At the start of ti, find the max-revenue-request-set, R.
8: if R is non-empty then
9: Move to the source location of the first request in R.

10: At the start of ti+1, serve request-set R.
11: else
12: Remain idle for ti and ti+1

13: end if
14: Let i = i+ 2.
15: end while

The algorithm segmented best path (sbp) [8] starts by splitting the total
time T into f segments each of length T/f (recall that f is fixed and 1 < f < T).
At the start of a time segment, the server determines the max-revenue-request-
set, i.e. the maximum revenue set of unserved requests that can be served within
one time segment, and moves to the source of the first request in this set. During
the next time segment, it serves the requests in this set. It continues this way,
alternating between moving to the source of first request in the max-revenue-
request-set during one time segment, and serving this request-set in the next
time segment. To find the max-revenue-request-set, the algorithm maintains a
directed auxiliary graph, G′ to keep track of unserved requests (an edge between
two vertices u,v represents a request with source u and destination v). It finds all
paths of length at most T/f between every pair of nodes in G′ and returns the
path that yields the maximum total revenue (please refer to [8] for full details).

It was observed in [8] that no deterministic online algorithm can be guar-
anteed to serve the requests served by opt during the last time segment and
the authors proved that sbp is 6-competitive barring an additive factor equal to
the revenue earned by opt during the last two time segments. More formally, let
rev(sbp(tj)) and rev(opt(tj)) denote the revenue earned by sbp and opt respec-
tively during the j-th time segment. Then if rev(opt(tf)) + rev(opt(tf−1)) ≤ c
for some constant c, then

∑f
j=1 rev(opt(tj)) ≤ 6

∑f
j=1 rev(sbp(tj)) + c. It was

also shown in [8] that as T grows, the competitive ratio of sbp is at best 4 (again
with the additive term equal to rev(opt(tf)) + rev(opt(tf−1))), resulting in a
gap between the upper and lower bounds.

6 A D Christman et. al

2.1 General lower bound

We first present a general lower bound for this problem and show that no
non-preemptive deterministic online algorithm (e.g. sbp) can be better than
2-competitive with respect to the revenue earned by the offline optimal schedule
(ignoring the last two time segments; see Lemma 1, below).

Theorem 1. No non-preemptive deterministic online algorithm for OLDARP
can be guaranteed to earn more than half the revenue earned by opt in the
first T − 2T/f time units. This is the case whether revenues are uniform or
nonuniform.

Proof (Sketch). The adversary repeatedly releases requests such that depending
on which request(s) the algorithm serves, other request(s) are released that the
algorithm cannot serve in time. This scheme requires carefully constructed edge
weights, release times, and revenues so that the optimal offline revenue is always
twice that of any online algorithm. Please see the full version of the paper for
details [7].

We now show that no non-preemptive deterministic online algorithm (e.g.
sbp) can be competitive with the revenue earned by opt in the last two segments
of time. We note that this claim applies to the version of non-preemption where,
as in real-world systems like Uber/Lyft, once the server decides to serve a request,
it must move there and serve it to completion.

Lemma 1. No non-preemptive deterministic online algorithm can be guaranteed
to earn any fraction of the revenue earned by opt in the last 2T/f time units.
This is the case whether revenues are uniform or nonuniform.

Proof (). The adversary releases a request in the last two time segments and if
the online algorithm chooses not to serve it, no other requests will be released.
If the algorithm chooses to serve it, another batch of requests will be released
elsewhere that the algorithm cannot serve in time. Please see the full version of
the paper for details [7].

3 Nonuniform revenues

In this section we improve the lower and upper bounds for the competitive ratio
of the segmented best path algorithm [8]. In particular, we eliminate the
gap between the lower and upper bounds of 4 and 6, respectively, from [8], by
providing an instance where the lower bound is 5 and a proof for an upper bound
of 5. Note that throughout this section we assume the revenue earned by opt
in the last two time segments is bounded by some constant. We must impose
this restriction on the opt revenue of the last two time segments because, as we
showed in Lemma 1, no non-preemptive deterministic online algorithm can be
guaranteed to earn any constant fraction of this revenue.

New Bounds for Maximizing Revenue in Online Dial-a-Ride 7

Fig. 1: An instance where opt (whose path is shown in green below) earns 5−4/(f−2)
times the revenue of sbp (shown in yellow above). In this instance, T = 2hf , and edges
that represent requests are shown as solid edges. For each such edge the release time
followed by revenue of the corresponding request is shown in parenthesis above the
edge. The weight of an edge is shown below the edge. Dashed edges represent empty
moves.

3.1 Lower bound on SBP

Theorem 2. If the revenue earned by opt in the last two time segments is
bounded by some constant, and sbp is γ-competitive, then γ ≥ 5.

Proof (Sketch). For the formal details, please refer to the proof of Theorem 2 in
the full version [7]. Consider the instance depicted in Figure 1. Since T = 2hf
in this instance, h represents “half” the length of one time segment, so only one
request of length h + 1 fits within a single time segment for sbp. The general
idea of the instance is that while sbp is serving every other request across the
top row of requests (since the other half across the top are not released until
after sbp has already passed them by), opt is serving the entire bottom row in
one long chain, then also has time to serve the top row as one long chain.

3.2 Upper bound on SBP

We now show that sbp is 5-competitive by creating a modified, hypothetical
sbp schedule that has additional copies of requests. First, we note that sbp loses
a factor of 2 due to the fact that it serves requests during only every other
time segment. Then, we lose another factor of two to cover requests in opt that
overlap between time segments. Finally, by adding at most one more copy of the
requests served by sbp to make up for requests that sbp “incorrectly” serves
prior to when they are served by opt, we end up with 5 copies of sbp being
sufficient for bounding the total revenue of opt. Note that while this proof uses
some of the techniques of the proof of the 6-competitive upper bound in [8],
it reduces the competitive ratio from 6 to 5 by cleverly extracting the set of
requests that sbp serves prior to opt before making the additional copies.

8 A D Christman et. al

Let rev(opt) and rev(sbp) denote the total revenue earned by opt and sbp
over all time segments tj from j = 1 . . . f .

Theorem 3. If the revenue earned by opt in the last two time segments is
bounded by some constant c, then sbp is 5-competitive, i.e., if rev(opt(tf)) +

rev(opt(tf−1)) ≤ c, then
∑f

j=1 rev(opt(tj)) ≤ 5
∑f

j=1 rev(sbp(tj)) + c. Note
that another interpretation of this result is that under a resource augmentation
model where sbp has two more time segments available than opt, sbp is 5-
competitive.

Proof. We analyze the revenue earned by sbp by considering the time segments
in pairs (recall that the length of a time segment is T/f for some 1 < f < T). We
refer to each pair of consecutive time segments as a time window, so if there are
f time segments, there are df/2e time windows. Note that the last time window
may have only one time segment.

For notational convenience we consider a modified version of the sbp sched-
ule, that we refer to as sbp′, which serves exactly the same set of requests as
sbp, but does so one time window earlier. Specifically, if sbp serves a set of re-
quests during time window i ≥ 2, sbp′ serves this set during time window i− 1
(so sbp′ ignores the set served by sbp in window 1). We note that the schedule
of requests served by sbp′ may be infeasible, and that it will earn at most the
amount of revenue earned by sbp.

Let Bi denote the set of requests served by opt in window i that sbp′ already
served before in some window j < i. And let B be the set of all requests that
have already been served by sbp′ in a previous window by the time they are

served in the opt schedule. Formally, B =
⋃df/2e

i=2 Bi. Consider a schedule opt
that contains all of the requests in the opt schedule minus the requests in B.
So opt earns total revenue rev(opt) − rev(B), where rev(B) denotes the total
revenue of the set B.

Let opt(tj) denote the set of requests served by opt in time segment tj . Let
opti denote the set of requests served by opt in the time segment of window i
with greater revenue, i.e. opti = arg max{rev(opt(t2i−1)), rev(opt(t2i))}. Note
this set may include a request that was started in the prior time segment, as
long as it was completed in the time segment of opti. Let rev(opti) denote the
revenue earned in opti.

Let sbp′i denote the set of requests served by sbp′ in window i and let
rev(sbp′i) denote the revenue earned by sbp′i. Let H denote the chronologically
ordered set of time windows w where rev(optw) > rev(sbp′w), and let hj denote
the jth time window in H. We refer to each window of H as a window with a
“hole,” in reference to the fact that sbp′ does not earn as much revenue as opt
in these windows. In each window hj there is some amount of revenue that opt
earns that sbp′ does not. In particular, there must be a set of requests that opt
serves in window hj that sbp′ does not serve in hj . Note that this set must be
available for sbp′ in hj since opt does not include the set B.

Let opthj
= Aj ∪ C∗j , where Aj is the subset of requests served by both

opt and sbp′ in hj and C∗j is the subset of opt requests available for sbp′ to

New Bounds for Maximizing Revenue in Online Dial-a-Ride 9

serve in hj but sbp′ chooses not to serve. Let us refer to the set of requests
served by sbp′ in hj as sbp′hj

= Aj ∪ Cj for some set of requests Cj . Note
that if opthj = Aj ∪ C∗j can be executed within a single time segment, then
rev(Cj) ≥ rev(C∗j) by the greediness of sbp′. However, since hj is a hole we
know that the set opthj

cannot be served within one time segment.
Our plan is to build an infeasible schedule sbp that will be similar to sbp′

but contain additional “copies” of some requests such that no windows of sbp
contain holes. We first initialize sbp to have the same schedule of requests as
sbp′. We then add additional requests to hj for each j = 1 . . . |H|, based on
opthj .

Consider one such window with a hole hj , and let k be the index of the
time segment corresponding to opthj

. We know opt must have begun serving
a request of opthj

in time segment tk−1 and completed this request in time
segment tk. Let us use r∗ to denote this request that “straddles” the two time
segments.

After the initialization of sbp = sbp′, recall that the set of requests served
by sbp in hj is sbphj

= Aj ∪ Cj for some set of requests Cj . We add to sbp a
copy of a set of requests. There are two sub-cases depending on whether r∗ ∈ C∗j
or not.

Case r∗ ∈ C∗j . In this case, by the greediness of sbp, and the fact that both
r∗ alone and C∗j \{r∗} can separately be completed within a single time segment,

we have: rev(Cj) ≥ max{rev(r∗), rev(C∗j \ {r∗})} ≥ 1
2 rev(C∗j). We then add a

copy of the set Cj to the sbp schedule, so there are two copies of Cj in hj . Note
that for sbp, hj will no longer be a hole since: rev(opthj

) = rev(Aj)+rev(C∗j) ≤
rev(Aj) + 2 · rev(Cj) = rev(sbphj

).
Case r∗ /∈ C∗j . In this case C∗j can be served within one time segment but

sbp′ chooses to serve Aj ∪Cj instead. So we have rev(Aj) + rev(Cj) ≥ rev(C∗j),

therefore we know either rev(Aj) ≥ 1
2 rev(C∗j) or rev(Cj) ≥ 1

2 rev(C∗j). In the
latter case, we can do as we did in the first case above and add a copy of the
set Cj to the sbp schedule in window hj , to get rev(opthj

) ≤ rev(sbphj
), as

above. In the former case, we instead add a copy of Aj to the sbp schedule in
window hj . Then again, for sbp, hj will no longer be a hole, since this time:
rev(opthj

) = rev(Aj) + rev(C∗j) ≤ 2 · rev(Aj) + rev(Cj) = rev(sbphj
).

Note that for all windows w /∈ H that are not holes, we already have
rev(sbpw) ≥ rev(optw). So we have

df/2e−1∑
i=1

rev(opti) ≤
df/2e−1∑

i=1

rev(sbpi) ≤ 2

df/2e−1∑
i=1

rev(sbp′i). (1)

where the second inequality is because sbp contains no more than two instances
of every request in sbp′. Combining (1) with the fact that sbp′ earns at most
what sbp does yields

df/2e∑
i=1

rev(opti) ≤ 2

df/2e∑
i=1

rev(sbpi) + rev(opt(tf−1)) + rev(opt(tf)). (2)

10 A D Christman et. al

Since sbp serves in only one of two time segments per window, we have
∑df/2e

i=1 rev(sbpi) =∑f
j=1 rev(sbp(tj)). Hence, by the definition of opt, and by (2) we can say

f∑
j=1

rev(opt(tj)) ≤ 2

df/2e∑
i=1

rev(opti)

≤ 4

f∑
j=1

rev(sbp(tj)) + rev(opt(tf−1)) + rev(opt(tf)). (3)

Now we must add in any request in B, such that opt serves the request in a
time window after sbp′ serves that request. By definition of B (as the set of all
requests that have been served by sbp′ in a previous window) B may contain at
most the same set of requests served by sbp′. Therefore rev(B) ≤ rev(sbp′), so
rev(B) ≤ rev(sbp). By the definition of opt, opt = opt +B, so

f∑
j=1

rev(opt(tj)) = rev(B) +

f∑
j=1

rev(opt(tj)) (4)

And by combining (3)-(4) with the fact that rev(B) ≤ rev(sbp), we have
∑f

j=1 rev(opt(tj))

≤
∑f

j=1 rev(sbp(tj)) + 4
∑f

j=1 rev(sbp(tj)) + rev(opt(tf−1)) + rev(opt(tf))

≤ 5
∑f

j=1 rev(sbp(tj)) + rev(opt(tf−1)) + rev(opt(tf)).

4 Uniform revenues

We now consider the setting where revenues are uniform among all requests,
so the goal is to maximize the total number of requests served. This variant is
useful for settings where all requests have equal priorities, for example for not-
for-profit services that provide transportation to elderly and disabled passengers.
The proof strategy is to carefully consider the requests served by sbp in each
window and track how they differ from that of opt. The final result is achieved
through a clever accounting of the differences between the two schedules, and
bounding the revenue of the requests that are “missing” from sbp.

We note that the lower bound instance of Theorem 2 can be modified to
become a uniform-revenue instance that has ratio 5 − 14/f. We further note
that the lower bound instance provided in [8] immediately establishes a lower
bound instance for sbp that has a ratio of 4. We now show that opt earns at
most 4 times the revenue of sbp in this setting if we assume the revenue earned
by opt in the last two time segments is bounded by a constant, and allow sbp
an additive bonus of f . Note that even when revenues are uniform, no non-
preemptive deterministic online algorithm can earn the revenue earned by opt
in the last two time segments (see Lemma 1). We begin with several definitions
and lemmas.

As in the proof of Theorem 3, we consider a modified version of the sbp
schedule, that we refer to as sbp′, which serves exactly the same set of requests

New Bounds for Maximizing Revenue in Online Dial-a-Ride 11

as sbp, but does so one time window earlier. For all windows i = 1, 2, ...,m, where
m = df/2e − 1, we let S′i denote the set of requests served by sbp′ in window
i and S∗i denote the set of requests served by opt during the time segment of
window i with greater revenue, i.e. S∗i = arg max{rev(opt(t2i−1), rev(opt(t2i))}
where rev(opt(tj)) denotes the revenue earned by opt in time segment tj . We
define a new set J∗i as the set of requests served by opt during the time segment
of window i with less revenue, i.e. J∗i = arg min{rev(opt(t2i−1), rev(opt(t2i))}.

Let S∗i = Ai ∪ X∗i ∪ Y ∗i , and S′i = Ai ∪ Xi ∪ Yi, where: (1) Ai is the set
of requests that appear in both S∗i and S′i; (2) X∗i is the set of requests that
appear in S′w for some w = 1, 2, ..., i − 1. Note there is only one possible w for
each individual request r ∈ X∗i , because each request can be served only once;
(3) Y ∗i is the set of requests such that no request from Y ∗i appears in S′w for
any w = 1, 2, ..., i− 1, i; (4) Xi is the set of requests that appear in S∗w for some
w = 1, 2, ..., i − 1. Note there is only one possible w for each individual request
r ∈ Xi, because each request can be served only once; (5) Yi is the set of requests
such that no request from Yi appears in S∗w for any w = 1, 2, ..., i− 1, i.

Note that elements in Yi can appear in a previous J∗w for any w = 1, 2, ..., i−
1, i or in a future S∗v or J∗v for any v = i + 1, i + 2, ...,m, or may not appear in
any other sets. Also note that since each request can be served at most once, we
have: A1 ∩X∗1 ∩ Y ∗1 ∩ A2 ∩X∗2 ∩ Y ∗2 ∩ ... ∩ Am ∩X∗m ∩ Y ∗m = ∅ and A1 ∩X1 ∩
Y1 ∩A2 ∩X2 ∩ Y2 ∩ ... ∩Am ∩Xm ∩ Ym = ∅.

Given the above definitions, we have the following lemma whose proof has
been deferred to the full version of the paper [7]. It states that at any given time
window, the cumulative requests of opt that were earlier served by sbp are no
more than the number that have been served by sbp but not yet by opt.

Lemma 2. For all i = 1, 2, ...,m we have
∑i

j=1 |X∗j | ≤
∑i

j=1 |Yi|.

We are now ready to prove our main theorem of this section.

Theorem 4. If the revenue earned by opt in the last two time segments is
bounded by some constant c, i.e., if rev(opt(tf))+rev(opt(tf−1)) ≤ c, then sbp
earns at least 1/4 the revenue of opt, minus an additive term linear in f , where
T/f is the length of one time segment. (So if f is also bounded by some constant,

then sbp is 4-competitive). I.e.,
∑f

j=1 rev(opt(tj)) ≤ 4
∑f

j=1 rev(sbp(tj)) +
2df/2e+ c.

Proof. Note that since revenues are uniform, the revenue of a request-set U is
equal to the size of the set U , i.e., rev(U) = |U |. Consider each window i where
rev(S∗i) > rev(S′i). Note that the set S∗i may not fit within a single time segment.
We consider two cases based on S∗i .

1. The set S∗i can be served within one time segment. Note that within S∗i =
Ai ∪X∗i ∪ Y ∗i , X∗i is not available for sbp′ to serve because sbp′ has served
the requests in X∗i prior to window i. Among requests that are available to
sbp′, sbp′ greedily chooses to serve the maximum revenue set that can be
served within one time segment. Therefore, we have

12 A D Christman et. al

rev(Xi)+rev(Yi) ≥ rev(Y ∗i). Since revenues are uniform, we also have |Xi|+
|Yi| ≥ |Y ∗i |.
If this is not the case, then sbp′ would have chosen to serve Y ∗i instead of
Xi ∪ Yi since it is feasible for sbp′ to do so because the entire S∗i can be
served within one time segment.

2. The set S∗i cannot be served within one time segment. This means there
must be one request in S∗i that opt started serving in the previous time
segment. We refer to this straddling request as r∗. There are three sub-cases
based on where r∗ appears.
(a) If r∗ ∈ Y ∗i , then due to the greediness of sbp′, we know that

rev(Xi) + rev(Yi) ≥ rev(r∗) (5)

since otherwise sbp′ would have chosen to serve r∗. We also know

rev(Xi) + rev(Yi) ≥ rev(Y ∗i \{r∗}) (6)

since otherwise sbp′ would have chosen to serve Y ∗i \{r∗}.
From (5), we have |Xi| + |Yi| ≥ 1 and from (6), we have |Xi| + |Yi| ≥
|Y ∗i | − 1.

(b) If r∗ ∈ X∗i , then r∗ is not available to sbp′ and only Ai,Xi, Yi, and Y ∗i are
available to sbp′. Therefore we know that rev(Xi) + rev(Yi) ≥ rev(Y ∗i)
since otherwise, by its greediness, sbp′ would have chosen to serve Ai

and Y ∗i instead of Ai, Xi and Yi, because Ai and Y ∗i can be served within
one time segment. Therefore, we have |Xi|+ |Yi| ≥ |Y ∗i |.

(c) r∗ ∈ Ai. Then r∗ is served by both opt and sbp′. We know that Ai ∪
Y ∗i \{r∗} can be served within one time segment since r∗ is the only
request that causes S∗i to straddle between two time segments. Again by
the greediness of sbp′, we have rev(Ai) + rev(Xi) + rev(Yi) ≥ rev(Ai) +
rev(Y ∗i) − rev(r∗) which means rev(Xi) + rev(Yi) ≥ rev(Y ∗i) − rev(r∗)
and |Xi|+ |Yi| ≥ |Y ∗i | − 1.

Therefore, for all cases, for window i, we have |Xi| + |Yi| ≥ |Y ∗i | − 1, which
means |Y ∗i | − |Xi| ≤ 1 + |Yi|, and with m = df/2e − 1,

m∑
i=1

(|Y ∗i | − |Xi|) ≤ m+

m∑
i=1

|Yi|. (7)

Now we will build an infeasible schedule sbp that will be similar to sbp′

but contain additional “copies” of some requests such that no windows of sbp
contain holes, i.e. such that rev(sbp) ≥

∑m
i=1 rev(S∗i).

We define a modified opt schedule which we refer to as opt′ such that
opt′ = ∪mi=1S

∗
i and observe that rev(opt′) =

∑m
i=1 |Ai|+

∑m
i=1 |X∗i |+

∑m
i=1 |Y ∗i |,

while rev(sbp′) =
∑m

i=1 |Ai|+
∑m

i=1 |Xi|+
∑m

i=1 |Yi|.
By Lemma 2 and equation (7), we can say rev(opt′)−rev(sbp′) =

∑m
i=1 |Y ∗i |−∑m

i=1 |Xi| +
∑m

i=1 |X∗i | −
∑m

i=1 |Yi| ≤
∑m

i=1 |Y ∗i | −
∑m

i=1 |Xi| ≤ m +
∑m

i=1 |Yi|.
This tells us that to form an sbp whose revenue is at least that of opt′, we must

New Bounds for Maximizing Revenue in Online Dial-a-Ride 13

“compensate” sbp′ by adding to it at most copies of all requests in the set Yi
for all i = 1, 2, ...,m, plus m “dummy requests.” In other words,

rev(sbp) = rev(sbp′) +m+

m∑
i=1

|Yi| ≥ rev(opt′). (8)

We know the total revenue of all Yi can not exceed the total revenue of sbp′,
hence we have

rev(sbp) = rev(sbp′) +m+

m∑
i=1

|Yi| ≤ 2 rev(sbp′) +m. (9)

Combining (8) and (9), we get rev(opt′) ≤ 2 rev(sbp′) +m, which means

m∑
i=1

rev(S∗i) ≤ 2

m∑
i=1

rev(S′i) +m. (10)

Recall that S∗i is the set of requests served by opt during the time segment of

window i with greater revenue. In other words,
∑2m

j=1 rev(S∗(tj)) ≤ 2
∑m

i=1 rev(S∗i),
which, combined with (10), gives us

2m∑
j=1

rev(S∗(tj)) ≤ 4

m∑
i=1

rev(S′i) + 2m. (11)

We assumed that the total revenue of requests served in the last two time seg-
ments by opt is bounded by c. From (11), we get

f∑
j=1

rev(S∗(tj)) ≤
2m∑
j=1

rev(S∗(tj))+rev(S∗(tf−1))+rev(S∗(tf)) ≤ 4

m∑
i=1

rev(S′i)+2m+c.

(12)
We also know that the total revenue of requests served by sbp′ during the first
m windows is less than or equal to the total revenue of sbp. Therefore, from
(12), we have

∑f
j=1 rev(S∗(tj)) ≤ 4

∑f
j=1 rev(S(tj)) + 2m+ c.

5 Bipartite graphs

In this section, we consider ROLDARP for complete bipartite graphs G = (V =
V1 ∪ V2, E), where only nodes in V1 maybe be source nodes and only nodes in
V2 may be destination nodes. One node is designated as the origin and there is
an edge from this node to every node in V1 (so the origin is a node in V2). Due
strictly to space limitations, most proofs of theorems in this section are deferred
to the full version of the paper [7].

We refer to this problem as ROLDARP-B and the offline version as RDARP-
B. We first show that if edge weights of the bipartite graph are not bounded by a
minimum value, then the offline version of ROLDARP on general graphs, which

14 A D Christman et. al

we refer to as RDARP, reduces to RDARP-B. Since RDARP has been show in
[8, 1] to be NP-hard (even if revenues are uniform), this means RDARP-B is
NP-hard as well.

Theorem 5. The problem RDARP is poly-time reducible to RDARP-B. Also,
RDARP with uniform revenues is poly-time reducible to RDARP-B with uniform
revenues.

Proof (Sketch). The idea of the reduction is to split each node into two nodes
connected by an edge in the bipartite graph with a distance of ε. Then we turn
each edge in the original graph into two edges in the bipartite graph. Please see
the full version for details [7].

5.1 Uniform revenue bipartite

We show that for bipartite graph instances, if revenues are uniform, we can guar-
antee that sbp earns a fraction of opt equal to the ratio between the minimum
and maximum edge-length.

Theorem 6. For any instance of ROLDARP-B where the revenues are uniform
for all requests, if edge weights are upper and lower bounded by T/f and kT/f ,
respectively, for some constant 0 < k ≤ 1, then rev(opt) ≤ d1/ke · rev(sbp) +
d1/ke.

Proof (Sketch). The proof idea is akin to that of Theorem 7 below. Please see
the full version of the paper for details [7].

5.2 Nonuniform revenue bipartite

In this section we show that even if revenues are nonuniform, we can still guar-
antee that sbp earns a fraction of opt equal to the ratio between the minimum
and maximum edge-length, minus the revenue earned by opt in the last window.
Recall that we refer to each pair of consecutive time segments as a time window.
Note that no non-preemptive deterministic online algorithm can be competitive
with any fraction of the revenue earned by opt in the last 2T/f time units (i.e.
Lemma 1 also holds for ROLDARP-B with nonuniform revenues). Due space
limitations, please refer to the full version of this work [7] for the proof of the
following theorem.

Theorem 7. For any instance of ROLDARP-B where the revenues of requests
are nonuniform, if edge weights are upper and lower bounded by T/f and kT/f ,
respectively, for some constant 0 < k ≤ 1, and if the revenue earned by opt in
the last time window is bounded by some constant c, then rev(opt) ≤ d1/ke ·
rev(sbp) + c.

New Bounds for Maximizing Revenue in Online Dial-a-Ride 15

References

1. Anthony, B., Boyd, S., Birnbaum, R., Christman, A., Chung, C., Davis, P., Dhimar,
J.: Maximizing the number of rides served for dial-a-ride. In: 19th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

2. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing
the completion time. In: Annual Symposium on Theoretical Aspects of Computer
Science. pp. 639–650. Springer (2000)

3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for
the on-line travelling salesman 1. Algorithmica 29(4), 560–581 (2001)

4. Birx, A., Disser, Y.: Tight analysis of the smartstart algorithm for online dial-a-ride
on the line. In: 36th International Symposium on Theoretical Aspects of Computer
Science (2019)

5. Birx, A., Disser, Y., Schewior, K.: Improved bounds for open online dial-a-ride on
the line. In: Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2019)

6. Bjelde, A., Disser, Y., Hackfeld, J., Hansknecht, C., Lipmann, M., Meißner, J.,
Schewior, K., Schlöter, M., Stougie, L.: Tight bounds for online tsp on the line.
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 994–1005. Society for Industrial and Applied Mathematics (2017)

7. Christman, A., Chung, C., Jaczko, N., Li, T., Westvold, S., Xu, X., Yuen,
D.: New bounds for maximizing revenue in online dial-a-ride. arXiv preprint
arXiv:1912.06300 (2020)

8. Christman, A., Chung, C., Jaczko, N., Milan, M., Vasilchenko, A., Westvold, S.:
Revenue maximization in online dial-a-ride. In: 17th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Christman, A., Forcier, W.: Maximizing revenues for on-line dial-a-ride. In: Interna-
tional Conference on Combinatorial Optimization and Applications. pp. 522–534.
Springer (2014)

10. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoretical
Computer Science 268(1), 91–105 (2001)

11. Jaillet, P., Wagner, M.R.: Generalized online routing: New competitive ratios,
56(3), 745–757 (2008)

12. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: A survey. The Vehicle
Routing Problem: Latest Advances and New Challenges pp. 221–237 (2008)

13. Jawgal, V.A., Muralidhara, V., Srinivasan, P.: Online travelling salesman problem
on a circle. In: International Conference on Theory and Applications of Models of
Computation. pp. 325–336. Springer (2019)

14. Krumke, S.O.: Online optimization: Competitive analysis and beyond (2002)
15. Krumke, S.O., de Paepe, W.E., Poensgen, D., Lipmann, M., Marchetti-Spaccamela,

A., Stougie, L.: On minimizing the maximum flow time in the online dial-a-ride
problem. In: International Workshop on Approximation and Online Algorithms.
pp. 258–269. Springer (2005)

16. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-
a-ride problems. Annals of Operations Research 259(1-2), 295–325 (2017)

