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Abstract. Dial-a-Ride problems (DARP) require determining a sched-
ule to efficiently serve transportation requests in various scenarios. We
consider a variant of offline DARP in a uniform metric space where re-
quests have release times and deadlines, and are all of equal duration and
value. The goal is for a single unit-speed, unit-capacity server to serve
as many requests as possible by an overall time limit, and this problem
is NP-hard. We show that a natural greedy algorithm, Earliest Deadline
First, is a 2-approximation, and this is tight.
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1 Introduction

The widely studied Dial-a-Ride Problem (DARP) requires scheduling one or
more servers to complete a sequence of rides, each consisting of a pickup location
(or source) and delivery location (or destination). Common optimality criteria
include minimizing makespan (i.e., the time the server has completed the last
request), minimizing the average flow time (i.e., the difference in a request’s
completion and release times), or maximizing the number of served requests
within a specified time limit. In many variants preemption is not allowed, so if
the server begins to serve a request, it must do so until completion. Applications
include the transport of people and goods, including package delivery services,
ambulances, ride-hailing services, and paratransit services. For an overview of
DARP and its many variants, please refer to the surveys [13,23, 18].

In this work we study offine DARP on the uniform metric space with a
single unit-capacity server, where each request has a source, destination, release
time, and deadline. Requests can be served only between their release time and
their deadline and may not be preempted. The server also has a specified time
limit T after which no more requests can be served, and the goal is to maximize
the number of requests served within 7. This variant may be useful for settings
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where several equal-length requests must be completed within a deadline and
each one has a specified time window for completion.

For the remainder of this paper, we refer to this request-maximizing, Time-
bounded DARP variant, where each request has a specified Time Window (its
release time to its deadline) as TDARPTW. TDARPTW is NP-hard because a
special case of the problem without time windows, TDARP, where each request
can be considered to have release time 0 and deadline 7', has already been shown
to be NP-hard in [1]. At any time ¢, given the current server location, we refer to
a request as servable if it has not already been served, and can feasibly be served
by its deadline. In this work, we show that the algorithm, which we refer to as
EARLIEST DEADLINE FIRST (EDF), that continuously serves the servable request
with the earliest deadline, has approximation ratio at most 2 for TDARPTW.

A common objective studied in previous DARP work is to minimize the time
needed to serve all requests, as inspired by the original objective of the Traveling
Salesperson Problem, since DARP is a generalization of TSP [17,8]. We note
that this more classical DARP objective can be reduced to the time-bounded
variant we study here, which has the objective of maximizing the number of
requests served by time 7. A solution for our time-bounded request-maximizing
TDARP can be invoked a polynomial number of times to find the minimum
time-bound where all requests can be served. Hence TDARP is at least as hard
as its corresponding more classical DARP variants.

There has been limited prior work on approximation algorithms for TDARP
in the offline setting. The work in [5] gives a O(logn)-approximation for the
closely related Vehicle Routing with Time Windows problem where n nodes in
a metric space have release times and deadlines and the goal is to visit as many
nodes as possible within their time windows. The work of [1] presented a 3/2-
approximation algorithm for the uniform metric version of the problem without
the constraint of time windows, or equivalently, where the time window for each
request was assumed to be [0,7]. The work of [2] showed that the Segmented
Best Path algorithm of [11,12] is a 4-approximation for TDARP on non-uniform
metric spaces. That same work also shows that a greedy algorithm that repeat-
edly serves the fastest set of k remaining requests has an approximation ratio of
2 + [A]/k, where A denotes the aspect ratio of the metric space.

In much of the voluminous and wide-ranging DARP literature, which is most
often generated by applied researchers in operations and management, the term
“time windows” often refers to slightly different notions than in our model, where
we simply have a release time and a deadline per request. DARP in settings with
time windows has been extensively studied with various parameters [19, 24, 21,
16], and the particular definition of time windows in our model has also been
studied in works such as [27,28,26], which unlike all the empirical research in
DARP, lies instead in the domain of competitive analysis of online DARP prob-
lems. In this domain, there have been a number of notable recent developments,
albeit with different objectives [4, 6, 7].

ODAPRTW, investigated by [27], is the same as our TDARPTW problem,
except the server has no overarching time limit, and their problem is online,
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so the requests are not known a priori, but instead arrive over time. They also
assume the time windows are of uniform length for all requests, and their goal
is to maximize the number of requests that meet their deadlines. They give an
algorithm with competitive ratio (2—A)/(24), where A denotes the diameter of
the metric space. In [26] they consider time windows of non-uniform length, as
we do, but in the online setting. They find that a greedy-by-deadline algorithm
is 3-competitive in the uniform metric.

DARP problems also generalize scheduling problems, as they require requests
to be served with the additional constraint of a metric space in which the server
must move to reach each request it wishes to serve. Scheduling requests with a
given deadline for each request is part of the setting in many classical problems
studied in scheduling theory literature, and the Deadline Scheduling Problem,
for example, is well-known to be (strongly) NP-hard [20].

The EDF scheduling algorithm is a simple greedy approach that is well-
known to be effective in many different contexts—offline, online, and in real-
time systems—for various scheduling objectives where jobs to be scheduled have
deadlines (for a sample of such settings, see [20,9, 14, 15,10, 25]). Due to space
constraints, we omit a more detailed discussion of the scheduling literature here.
To our knowledge, our work is the first to present an approximation guarantee
for greedy EDF scheduling of DARP requests with release times and deadlines.

2 Formalizing the Problem and Algorithm

The input for an instance of our problem, TDARPTW, consists of a uniform
metric space, an origin, a set of requests S, and an overall time limit 7. The
origin o, a point in the metric space, indicates where the server is at time 0; a
request may start at o but need not. Each request is an ordered tuple (s, d, a,b)
consisting of the source s, destination d, release time a, and deadline b. We focus
on the offline variant, where all information is known at time O.

We assume without loss of generality that all time values (e.g., release times,
deadlines, T) are integers. We do not allow preemption so if the server begins
serving a request, it will serve it to completion. For any request i, let a; and
b; denote the release time and deadline of 7, respectively, with 0 < a; < b;. We
refer to [a;,b;] as the time window for request i. The goal for TDARPTW is
to maximize the number of requests that a single unit-capacity server can serve
within their time windows by the time limit 7.

For an algorithm ALG and a TDARPTW instance I, ALG(I) denotes the
schedule created by ALG on I, i.e., the action prescribed by ALG for the server
at each time unit, and OoPT(I) denotes an optimal schedule on I. |ALG(])| and
|oPT(I)| denote the number requests served by ALG and OPT, respectively, on
instance I. When the instance is clear from the context, (I) may be dropped.

We define a request to be “servable” at a given time if it can be reached and
served within its time window. We also define “drive” below, similarly to [1].
In the uniform metric space, all drives (empty or service) each take one time
unit. We emphasize that because the schedule is part of the definition of a drive,
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serving the same request in EDF(I) and oPT(I), even during the same time unit,
is considered two distinct drives.

Definition 1. For a request i and a time t, let h;(t) be an indicator variable
where h;(t) = 0 if the server is at the source of request i at time t and h;(t) =1
otherwise. We characterize request i as servable at time t if request i has not
already been served by time t and a; <t + hy(t) and b; >t + h;(t) + 1.

Definition 2. A drive refers to one movement of the server from one point in
the metric space to a second (not necessarily distinct) point at a specific time in
a given schedule (e.g. EDF or OPT). A drive that serves a request is a service
drive. A drive that does not serve a request but simply re-positions the server or
allows it to remain at the current location for one time unit is an empty drive.

2.1 The Earliest Deadline First (EDF) Algorithm

One might be inclined to think it is trivial to find an algorithm that serves a
request every other time unit, giving a 2-approximation. However, due to the
constraints of the release times and deadlines, such schedules may not always
exist or be straightforward to find.

The focus of this paper is on an algorithm inspired by the well-established
earliest deadline first greedy algorithms from the scheduling literature (see, e.g.,
[20, 25]). Informally, we greedily consider all servable requests, serving one with
the soonest deadline, breaking ties arbitrarily, as long as time remains. Our EDF
algorithm is formally described in Algorithm 1. Note that EDF does not simply
sort by earliest deadline, as a request is servable only if it has been released.
Furthermore, EDF will first consider requests that can be served in the next two
time units rather than only those in the next time unit, as only those requests
that begin where the server is currently located can be served in the next time
unit. Requiring the server to prioritize requests at its current location could result
in serving requests with later deadlines while requests with earlier deadlines are
available. This is not necessarily beneficial as we show in Theorem 4.

3 Our Results

We first lower bound the performance of EDF by showing that there exist in-
stances of TDARPTW such that |EDF| = |oPT|/2.

Theorem 1. There exist arbitrarily large instances of TDARPTW such that
|opPT| = 2 - |[EDF|.

Proof. Consider an instance which consists of T" requests, each with release time
0 and deadline T', where the destination of one request is the source of the next
request, and 7T'/2 requests, each with release time 1 and deadline T'— 1, where all
the sources and destinations are distinct points in the metric space. No requests
have their source at the origin.
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Algorithm 1 The Earliest Deadline First (EDF) algorithm

1: Input: Metric space of points, set S of requests, time limit 7', origin o.

2: whilet <T —2do

3: if there are no servable requests (recall definition of servable) then

4: t=1t+1

5: else

6: Choose a request, r, with the earliest deadline among all servable requests.
7 Let s and d denote the source and destination, respectively, of r.

8: if the server is at s then

9: Serve r during time [¢,¢t + 1]. Set t = ¢ + 1.
10: else
11: During [t,t + 1], move the server to s and during [t + 1,¢ + 2] serve .
12: Set t =1+ 2.
13: end if
14: end if

15: end while

16: if t =T — 1 and there is a servable request then
17: Serve any such servable request during [¢t,T7].
18: end if

OPT can serve all T'— 1 of the requests with release time 0 and deadline T
no better solution is possible in time 7" as there is no request beginning at the
origin. Thus, |oPT| = T — 1. EDF chooses a request with deadline T'— 1 over
any request with deadline T'. Accordingly, EDF serves all (T'—1)/2 requests with
deadline T'—1 and must do an empty drive between every pair of requests, giving
|EDF| = (T —1)/2 = |oPT|/2. O

For the upper bound, we will show by induction that |oPT(I)| < 2|EDF(I)[+1
for any input instance I. The most involved case of the proof is when EDF(I) has
as least two consecutive empty drives, so we define terminology for that scenario
and a given instance I, enabling us to derive various facts that we can then use
in the overall proof. Key to our work is considering what requests are or could
have been servable before the first time EDF makes two consecutive empty drives,
since without two consecutive empty drives, EDF would be serving at least one
request every other time unit, immediately giving us the ratio of 2. Accordingly,
let the earliest such occurrence of two consecutive empty drives by EDF(I) be
during the interval [r, 7 + 2], for some time 7 < T — 2. Let w be the number of
requests EDF(I) has served by time 7.

We now focus on requests that are served before 7, and in particular, requests
whose deadlines are after 7, since our induction will be based on a smaller in-
stance created by removing such requests. Let E* be the set of empty drives
that opT(I) makes during [0,7]. Let R* be the set of requests with deadline
> 7 + 2 that opT(]) serves during [0, 7 + 2]. We define a set R to be analogous
to R* except served by EDF([) instead of by opT(I). Formally, let R be the set
of requests with deadline > 7+ 2 that EDF serves during [0, 7+ 2]. Note that the
deadline requirement for R* requests ensures that R* C R, since if a request in
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R* was not served by EDF during [0, 7], it could have then been served during
[7,7 + 2] in which EDF makes two empty drives. The size of the set R — R* is
important in the inductive proof of Theorem 2.

We further partition the requests in R into two sets depending upon whether
or not they were served in EDF(I) after an empty drive. Formally, define disjoint
sets X and Y with XUY = R as follows: Y C R are requests served in EDF(I) af-
ter time interval [0, 1] that do not immediately follow another request in EDF(I);
they must follow an empty drive in EDF(I). X C R are requests which are either
served at time 0 or immediately follow another request in EDF(I), which could
have been in X but could likewise have been in Y or need not have been in R
at all if its deadline was less than 7 + 2.

Let the set @ be all requests served in EDF(I) by time 7 that were not
preceded in EDF(]) by an empty drive. Thus, all requests in @) are either served
at time 0 or immediately follow another request served by EDF. @ is a superset of
X, as unlike X, the requests in ) are not constrained to have a deadline > 74 2.

Since 7 is the first time at which two consecutive empty drives occur in EDF’s
schedule, every empty drive by EDF in [0, 7] is followed by a request served. We
can thus add the number of requests served by EDF by time 7, or w, to the
number of empty drives by EDF prior to 7, or w — |@Q|, to get

T=2w—|Q| (1)

Understanding how EDF differs from OPT allows us to bound EDF’s perfor-

mance. As such, we construct an alternating sequence of drives that we call a

trace that allows us to catalog EDF’s non-optimal choices, as well as what OpT

was doing when EDF served a different request, “tracing” through the two par-

allel schedules to the roots of the discrepancies between the two schedules. See
Figure 1 for an example.

Definition 3. An alternating trace, or simply a trace, is a sequence of dis-
tinct drives that alternates between drives of OPT and drives of EDF. A trace
is constructed using the rules below, beginning with the initialization in Rule 1
and then iterating between Rule 2 and Rule 3 as applicable until a termination
condition (Rule 4-Rule 6) is reached. A mazximal alternating trace is a trace
that is not a proper subsequence of any other trace.

Rule 1 Begin the trace with a drive in EDF from R or a drive in OPT from R*.

Rule 2 If the drive most recently added to the trace is a request served by
OPT, it is immediately followed in the trace by the EDF drive serving
the same request. (Note that we know EDF has indeed served the same
request at some point due to Lemma 1 below.)

Rule 3 If the drive most recently added to the trace is a drive EDF did at some
time ¢ and is preceded in EDF by an empty drive, then the next drive
in the trace is the drive opPT did at time t.

Rule 4 If the drive most recently added to the trace is one that EDF did at
time ¢ that was not preceded in EDF by an empty drive at time ¢t — 1,
then the trace terminates after said drive.
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Fig. 1. An alternating trace. This figure depicts the schedule of drives in EDF in parallel
with that of OPT, with time increasing to the right. Each drive (empty or service) is
represented by a directed edge to the right between two points. The trace itself is
represented by the dashed edges leading from a drive in one schedule to a drive in the
other. The trace shown here starts with a drive in EDF serving a request from Y C R,
and ends with an empty drive of OPT (in E*). Drives that are the same shade serve
the same request.

Rule 5 An empty drive in OPT ends the trace.

Rule 6 If the preceding rules ever result in an attempt to add a drive that is
already part of the trace, the trace instead terminates (e.g., if there is
a request served by both EDF and OPT at the same time, and applying
Rule 2 would cause the same EDF drive to be added to the trace a
second time). This rule prevents the same drive within a schedule from
being repeated in the trace.

Maximal alternating traces are disjoint from one another due to the deter-
ministic nature of their construction. We use the following lemma for Rule 2,
above, as well as for our main result in Theorem 2.

Lemma 1. In a mazximal trace, every request served by a drive of OPT must
also be served by a drive of EDF, and these drives never occur past T + 2.

Proof Idea. Suppose there is a trace with a drive of OPT before time 7 + 2
serving a request ¢ € R*. Then EDF could have served ¢ at time 7+ 1, but did
not because EDF has two empty moves during [r,7 + 2]. Therefore EDF must
have already served g before time 7, implying ¢ € R. The difficult case is when
q ¢ R*, having a deadline before 7 + 2, and hence also ¢ ¢ R. For this case,
we strengthen the inductive hypothesis, and show any request satisfying certain
time window constraints (which any request served by OPT must also satisfy)
will be served by EDF. Due to space limitations, the proof is deferred to the full
version ([3]). O

To aid in categorizing maximal traces, in Lemma 2 we state their possible
termination types. Note that every request in R and R* appears exactly once
in some maximal trace. To relate |EDF| to |OPT| we endeavor to find a relation
between the sizes of R — R*, @, and E*. An increase in |R — R*| can decrease
what EDF serves after time 7, an increase in |@Q| increases what EDF serves before
time 7, and an increase in |E*| decreases what OPT serves before time 7.
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Lemma 2. Other than traces that consist of a drive from OPT and a drive from
EDF that serve the same request in the same time unit', any mazimal alternating
trace ends in Q or E*.

Proof. By Lemma 1 and Rule 2, a maximal trace cannot end at a request served
by OPT except in the case of Rule 6. Thus the only way of ending a trace is if
EDF serves a request in @ (Rule 4), or if OPT does an empty drive (Rule 5). O

Let C denote the collection of all maximal alternating traces. Due to Lemma
2, we may partition C' into six categories Cy through Cj as described below.
(Also see Figure 2.) For the remainder of this work, the term “trace” always
refers to maximal traces.

S S S S Q S Q S
EDE |Y§|k~, |Y§|k’k~ \\Ik, “\\Ik,k

* \y \\* * \y \\* \\ y \\* y \\* \\
OPT E* (s (sV|E* s (s . s (8 s 8 .

Fig. 2. Small examples depicting four general categories of traces (from left to right):
Ch, Cs, C3, and C4. Recall that Y C R. To avoid crossing lines, these are samples of
traces that proceed from later in the schedules to earlier, but as shown in Figure 1, the
upward edges may, more generally, also point forward in time rather than backward.

Trace categories Cy and C5 are not shown in Figure 2, as they are special

cases where the trace includes only a single request.

Co: traces consisting solely of requests from X (terminated immediately due to
Rule 4)

C1: traces beginning with a request from Y C R and ending with an empty drive
from E* (terminated due to Rule 5); one such trace was also seen in Fig. 1.

Cs: traces beginning with a request from R* and ending with an empty drive
from E* (terminated due to Rule 5)

Cj3: traces beginning with a request from Y C R and ending with a request from
Q@ (terminated due to Rule 4)

Cy: traces beginning with a request from R* and ending with a request from @
(terminated due to Rule 4)

Cs: traces consisting only of two drives: the same request served at the same
time in both R* and Y (terminated due to Rule 6)

Definition 4. For any set of requests P, we define P; to be the number of re-
quests from P that occur in a trace from category Cj;.

We derive the following facts about the size of R* by considering trace cat-
egories Cy to C5. From Lemma 1, we know that R} < R, = X; +Y; for any

'In this special case, represented by category Cs, the trace ends in R* or Y.
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trace category ¢ = 1...5, and we also know from Rule 2 that every request of
X, or Y; was preceded in the trace by a request of R}, so R} = X; + Y}, unless
the trace started with an additional drive from EDF. So for trace categories that
start with an initial EDF request (from Y, in the case of Cy or Cs, or from X,
in the case of Cp) we must subtract |C;| in computing the size of R*.

Fact 0: R§ = Xo + Yy — |Col. (Here, Yy = 0 and Xy = |Cy, so R§ =0.)
Fact 1: Ry{ = Xl + Yi — ‘Cl| (Here, Xl = 0)

Fact 2: R} = X3 + Ya. (Here, X5 =0.)

Fact 3: R% = X3+Y;—|Cs.

Fact 4: RZ = X4 + Y4.

Fact 5: Rf = X5+ V5. (Here, X5 =0.)

We are now ready to prove the main theorem of this work.

Theorem 2. |orT(I)| < 2|EDF(I)| + 1 for any input instance I of TDARPTW.

Proof. We proceed by induction on |[EDF(I)| + T'. Base step: |[EDF(I)| + T = 1.
In this case T =1 and |EDF(I)| = 0. Since EDF cannot serve any requests, then
neither can OPT. So |oPT(I)| = 0, and the claim is satisfied.
Inductive step: For the inductive step, we thus consider |EDF(I)|+7 > 2 and
suppose the theorem holds for any instance I’ where |EDF(I")|+T < |EDF(I)|+T.
We consider two cases depending upon the size of T' compared to |EDF(I)].
Case 1: T' < 2|EDF(])|+1. In this straightforward case, because of the time limit,
OPT can serve at most 2|EDF(])| + 1 requests, so the claim holds.
Case 2: T' > 2|EDF(I)| + 2. Since T' — |[EDF(I)| > |EDF(I)| + 2, EDF(]) must have
|EDF(I)|+2 or more empty drives, and thus at least two consecutive empty drives.
As defined above, the earliest such occurrence is during the interval [r, 7 + 2].
Summing the six labeled facts above and noting that |R| = |X| + |Y| =
X0+X3+X4+Y1+Y2++Y5, we have

[R| = [R*] = |C1] + [C5] + [Co- (2)

We now define a sub-instance I’ of the original instance I as follows. We
remove all requests that EDF served by time 7, and we also remove any requests
with deadline at most 74 2. The origin is at the point in the metric space where
EDF(I) (EDF’s schedule on the original instance) places the server at time 7+ 1;
denote said point as m. The new time limit is T'— (7+1), but to avoid confusion,
we will view the time in I’ as running from time 7+ 1 to time 7.

Observe that by construction there are no servable requests in this sub-
instance I’ at time 7 + 1: any request with release time 7 + 1 or earlier and
deadline greater than 7 + 2 would have already been served by EDF because
otherwise EDF(I) would not have had two consecutive empty drives at time 7.

Let w* denote the number of requests served by opT(I) in [0, 7 + 2]. To give
a lower bound on OPT’s performance on the sub-instance (opT(I")), we consider
the subschedule of OPT(I) starting at time 7 + 2 continuing on OpPT(I)’s path
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to time T. We let P denote this subschedule concatenated with a single drive
from m to the front. The requests served by following P on I’ number at least
|opT(I)| — w* — (|R| — |R*|): this accounts for all of the requests that opT(I)
serves in time [+ 2, T] (the |oPT(I)| —w*) as well as those served by EDF(I) by
time 7+ 2 with deadline 7+ 2 or later (collectively |R|), except for those oPT([)
had served by time 7 + 2 (which total |R*|). Hence,

loPT(I)| — w” — (|R| — |R"[) < |oPT(I')]. 3)

By induction on the sub-instance I’, since no request can be served in the
first time unit, we have |oPT(I")| < 2|EDF(I’)|. Observe that EDF(I’) has the
same schedule as the suffix of EDF(I) starting from 7 + 1. Thus, since EDF(])
serves w requests by time 7, EDF(I") serves precisely |EDF(I)| —w requests. Thus,

lopT(I)| < w* + (|R| — |R*|) + 2|EDF(I)| — 2w. (4)

To bound w*, we let z be a binary indicator variable denoting whether or not
OPT(I) serves a request at time [r + 1,7 4 2], with value 1 if it does. Thus,
w* < (7 + 1)+ z — |E*|. Combined with Equations 4 and 2, we get

0PT(I)] < 7+ 1+ 2 — [E*| + (|C1] + Cs] + |Col) + 2lEDP(1)] — 20, (5)

We now consider how |E*| relates to other quantities, defining E’ informally
as the empty drives of OPT not appearing in any trace. Formally, let E' =
E* — (Ef U E3), since empty drives of OPT appear in traces of category C; or
C> only. Using the observations that Ef = |C1| and Ej = |Cs|, we have

|E*| = |E'| + |C1] + |Cal. (6)
Substituting Equations 1 and 6 into Equation 5 gives:
loPT(I)] < —|Q| + 1+ 2 — |E'| = |C2| + |Cs| + |Co| + 2[EDF(I).  (7)

Because each Cy, (3 or C4 trace has an element from ) and such requests
are all distinct, |Q| > |Co| 4+ |Cs| + |Cy|. Combining that with Equation 7 gives

|[oPT(I)| <1+ 2z — |E'| — |C2| — |C4| + 2|EDF(T)]. (8)

Observe that if z = 1, the OPT request at time [T + 1,7 + 2] begins a C5 or
Cy trace, ensuring |Cy| + |C2| > 2z, whether z is 1 or 0. Thus,

lopT(I)] < 1—|E'| + 2|EDF(I)], (9)
allowing us to conclude that |opT(I)| < 2|EDF(I)| + 1. O

If opT(I) did not serve a request in the first time unit we can remove the
additive 1 term in the upper bound, getting a stronger formulation. Note that
this case will always occur if there is no request whose source is the origin.
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Theorem 3. For any instance I of TDARPTW on which opT(I) does not serve
a request during the time [0,1], |oPT(I)| < 2|EDF(I)].

Proof. In the straightforward case where where T' < 2|EDF(I)| + 1, if OPT does
not serve a request in the first time unit, then OPT can serve at most 2|EDF([)],
satisfying the claim.

For the other case, where T' > 2|EDF(I)| + 2, we begin with Equation 9 from
Theorem 2, |opT([)| <1 — |E’| + 2|EDF(I)|, which holds for any instance of the
problem, and now consider how it can be refined when opT(I) does not serve a
request during [0, 1]. We consider whether EDF(I) served a request during [0, 1].
If EDF(I) also did not serve a request during [0, 1] then oPT(I)’s empty drive at
[0, 1] does not appear in any trace (since according to the rules of traces, empty
drives of EDF do not belong in any trace), but is in E’, so |E’| > 1, and thus
|opT(I)| < 2|EDF(])|, satisfying the claim.

If EDF(I) does serve a request, call it r1, during [0, 1] we now show by in-
duction on a smaller instance that the same conclusion is reached. This smaller
instance Z differs from the original input I in that its origin o is the destination
of r1, request r; is removed from the set of requests, and the time limit is 7" — 1.
Note that |EDF(Z)| = |[EDF(I)| — 1.

Let P denote the path that proceeds from 6 to where opT([) is at time 2 (call
that location f) and then continues on OPT(I)’s path for the remaining 7' — 2
units of time. We will use P to serve as a proxy for OPT to bound the value of
OPT(Z). Let z be an indicator variable denoting whether or not there is a servable
request at time 2 from 6 to f. We lower bound the number of requests P served
by considering that while P largely aligns with opT(I), if OPT served r1, P will
not because 1 is no longer present in Z and P may now make a different move
during time [1,2]. Accordingly, |P| > |oPT(I)| —2+z, or |oPT(I)| < |P|+2—z.
By Theorem 2, |P| < |oPT(Z)| < 2(|EDF({)| — 1) + 1.

When z =1, |opT(I)| < 2(JEDF(I)| — 1) + 1 4+ 2 — 2z = 2|EDF(])|. In the case
z=0,if |P| = 2(JEDF(I)| — 1) + 1, then P is an optimal path on Z. As such, the
inductive hypothesis, |oPT(Z)| < 2(|EDF(Z)|, guarantees |P| < 2(|EDF(I)| — 1).
Thus, when z =0, |oPT(I)| < |P|+2— 2z < 2(|EDF({)| — 1) + 2 — z = 2|EDF(J)].

Hence, the proof is complete. a

From Theorems 1 and 3, we obtain the following corollary.

Corollary 1. When no requests have their source at the origin, the approrima-
tion ratio of the EDF algorithm for TDARPTW is 2 (and this is tight).

One may wonder if a better performance can be achieved if the server does not
make an empty drive to serve an earlier-deadline request when there is a request
available at its current location. Informally, the opportunistic EDF algorithm,
denoted EDFO, determines the set of servable requests that begin where the
server is located. If that set is nonempty, it chooses a request arbitrarily among
those in the set with the earliest deadline; if that set is empty, it chooses a request
as in EDF. Whenever ¢ is incremented, it repeats this procedure. We show that
the same upper bound holds for EDFO as for EDF. Moreover, this EDFO algorithm
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need not be better than EDF. The full version ([3]) provides instances for which
|oPT| = |EDF| but |OPT|/|EDFO]| is arbitrarily close to 2.

Theorem 4. EDFO is a 2-approzimation for TDARPTW (and this is tight).

Proof. Apply the proof of Theorem 2, replacing EDF with EDFO, except for the
distinctions we now note. Few changes are needed since when EDF serves a re-
quest that is preceded by an empty drive, it chooses the earliest deadline among
all servable requests. As such, all claims about the traces and almost all equa-
tions still hold. However, we need to consider the situation in which OPT serves
a request in the first time slot, [0,1]. In such a case, though EDF may not have
served a request during [0, 1], EDFO must; call this request 7.

Reviewing the definitions of various sets of requests, ¥ € @ as it is served
by EDFO prior to time 7 and not preceded by an empty drive. Accordingly, we
have to adjust the proof of Theorem 2 from right after Equation 7 where we first
consider the size of Q). Because 7 is not counted in Cy, C3 or C4 but is part of
@, we can state that for EDFO we have |Q| > |Cy| + |C5] + |Cy4| + 1. Combining
this inequality with Equation 7 gives

lopT(I)| < —|C4| + 2z — |E'| — |Ca| + 2|EDFO(])].

Identically to the proof of Theorem 2, if z = 1, the OPT request at time [r +
1,7 + 2] begins a Cy or Cy trace, ensuring |Cy| + |C2] > z, and hence that
|opT(I)| < 2|EDFO(I)|.

The matching lower bound is deferred to the full version [3] due to space
limitations. a

4 Concluding Remarks

Preliminary experimental results indicate that while EDF may serve as few as
half of the requests that OPT serves, that is rare; EDF often performs close to
optimally and determines a schedule quickly [22].

A natural extension to TDARPTW would be to consider the problem in the
online setting, where requests are not known until their release times. The work
of [26] studies ODARPTW, which is the online form of TDARPTW, but with-
out the overall time limit 7. They show that an online algorithm that schedules
requests greedily by “waiting time,” which is a proxy for the deadline of the
request, is 3-competitive. For the online form of TDARPTW, preliminary in-
vestigations provide instances guaranteeing that the online form of EDF has a
competitive ratio no better than 3; our conjecture is that the online form of EDF
is in fact 3-competitive for the online form of TDARPTW, consistent with [26].
However, if requests were known one time unit prior to their release, perhaps
akin to how users call-ahead for ride services, the ratio of 2 from the offline
setting holds. This is because our offline EDF algorithm uses information about
a request only one time unit before it serves the request.
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