
CS333 - Problem Set 9

1. Quantum Hype Chapter II: Limits of Quantum Computation

We’ve seen that superposition in combination with interference due to non-positive phases
can result in quantum speed-ups. While it is not true that superposition alone gives quantum
computers an advantage, you might still assume that quantum computers can in general give
a large speed-up for most problems, as long as you apply the proper phases.

However, we have query complexity lower bounds for many important problems. A quan-
tum query lower bound means it is impossible to solve the problem using fewer than that
many queries, even with a quantum computer. Thus lower bounds put a limit on the speed-up
possible with a quantum computer. Here are some problems where only a limited, polynomial
quantum speed-up is proven to exist (we use Ω to denote an asymptotic lower bound):

Problem
Quantum Query Com-
plexity Lower Bound

Best Classical
Query Complexity

Parity of length-n binary string n/2 n

Searching unordered length-n list Ω(
√
n) O(n)

Graph connectivity (n vertices) Ω(n3/2) O(n2)

Researchers have found that to get exponential quantum speed-ups, the problem needs to
have some structure in it, like the promise of a periodic function, that allows all of the phases
to interfere in a systematic, rather than random, way. Either that, or the problem should be
natural for quantum computers - namely simulating quantum chemistry, which will likely be
helpful for drug and industrial chemical engineering problems.

Of the problems in the above table, of particular importance is searching an unordered
list. People want to apply quantum algorithms to solve NP-Complete optimization problems
like 3-SAT, but part of the reason 3-SAT is hard is that there is not a lot of structure to
the problem - the best classical algorithms are (more-or-less) searching through exponentially
many assignments to find one that works. But we see that when it comes to searching through
a list of items, quantum computers only give a moderate advantage - a quadratic speed-up,
not an exponential speed-up. Using all of the mathematical techniques we have currently
developed to analyze quantum algorithms, there is no evidence that quantum computers can
use the limited structure present in 3-SAT type problems to get a better than quadratic speed-
up. A quadratic speed-up of a problem that requires exponential time to solve is obviously
better than nothing, but a quadratic speed-up of an exponential time algorithm still results
in an exponential time algorithm.

Despite this, when people are trying to sell the advantages of quantum computers, they
frequently say that it is possible that quantum computers will given an advantage on hard
optimization problems. They sometimes argue that with our current techniques, we can’t
analyze everything that a quantum computer will do, and so until we actually build a quantum
computer, we won’t know whether we will get an advantage or not.

1

Examples of some of this optimization hype in action:

• See page 27 of IonQ’s Investor Presentation. (IonQ is a start-up company that recently
raised $2 billion in public investment.)

• Traffic optimization

Please write a brief reflection on some or all of the following questions: Based on what you
know about quantum computers (which, though still limited, is likely more than what most
investors in quantum start-ups know) do you find this build-it-and-see argument compelling?
What might be the negative and/or positive consequences of this type of hype? Is the
investment in quantum computers worth it if the only advantage for optimization ends up
being a quadratic speed-up, and the uses of quantum computers are limited primarily to
chemistry simulations?

2. Suppose we have a function f that has a hidden slope m. By this we mean that f takes as
input a pair of non-negative integers x and y, that we interpret as x and y coordinates. Then
we can imagine plotting a series of parallel lines in the x − y plane, all with slope m. Then
f(x, y) takes the same value for all pairs (x, y) on the same line. Given such a function f ,
our goal is to find the slope, m, using as few queries to f as possible.

Below are two examples of what f looks like for different values of m, where the value
of f is shown using colors, since both the x and y axes correspond to input values (we have
periodic boundary conditions, so the lines that extend off of the top of the plot come back
up from the bottom):

2

https://static1.squarespace.com/static/5e33152a051d2e7588f7571c/t/60459578b8c075444a656357/1615173012167/IonQ+Investor+Presentation+030721+vFF.pdf
https://www.forbes.com/sites/moorinsights/2021/03/23/ionq-takes-quantum-computing-public-with-a-2-billion-deal/?sh=6be517ca5d06
https://www.geekwire.com/2019/microsoft-ford-try-using-quantum-style-computing-solve-seattles-traffic-problems/

More precisely, given a prime number p, let f : {0, 1, . . . , p − 1} × {0, 1, . . . , p − 1} →
{0, 1, . . . , p− 1} such that f(x, y) = f(x′, y′) if and only if

y′ − y ≡ m(x′ − x) mod p (1)

for some fixed but unknown integer m. Or equivalently, all pairs (x, y) such that

y ≡ mx + b mod p (2)

have the same output value of f – in particular, they all have output f(0, b), since (0, b) is
one point on the line. For each b ∈ {0, 1, . . . , p − 1}, we get a different line, with a different
output value of f .

You are given access to Uf which acts on standard basis states as Uf |x〉A|y〉B|z〉C =
|x〉A|y〉B|(z + f(x, y)) mod p〉C for all x, y, z ∈ {0, 1, . . . , p− 1}. (Note that each of the three
registers A, B, and C are p-dimensional states.)

(If you are not familiar with modular arithmetic through basic addition and multiplication,
or need a refresher, this article seems to cover the topic clearly and concisely. There are also
a wealth of videos online. If you find a good resource, please post to Teams!)

(a) Consider the case that p = 3. What is m for the function f with the following truth
table?

x y f(x, y)

0 0 1
0 1 2
0 2 0
1 0 2
1 1 0
1 2 1
2 0 0
2 1 1
2 2 2

(3)

(b) What is the classical probabilistic query complexity of this problem?

(c) Consider the following circuit (which is very similar to the period finding circuit!!)

|0〉A QFTp

Uf

QFTp

|0〉B QFTp QFTp

|0〉C

(4)

i. What is the state of the system after the Uf is applied?

ii. Rewrite your state from part i so that it is in the proper form to analyze the partial
measurement on register C. (You need to group together all terms where register C
has the same standard basis state, and normalize the A/B states in each term.)

3

https://brilliant.org/wiki/modular-arithmetic/

iii. Now analyze the result of the partial measurement on register C. What is the
probability of an outcome |f(0, b∗)〉 occurring? What is the state of the AB system
after getting outcome |f(0, b∗)〉 in the C system?

iv. If the outcome of the measurement on register C is |f(0, b∗)〉, show that the final
state after the last two QFTs is

1
√
p3

p−1∑
j,l=0

e2πilb
∗/p

(
p−1∑
x=0

e2πix(j+lm)/p

)
|j〉|l〉 (5)

v. Explain why when you measure the remaining state in the standard basis, you will
get an outcome |j〉|l〉 where j ≡ −lm mod p.

vi. It is a fact from number theory that every number except 0 has a multiplicative
inverse modp when p is prime. In other words, if j 6≡ 0 mod p, there exists j−1 such
that jj−1 ≡ 1 mod p. Use this fact to explain how to learn m from the outcome of
the measurement on registers A and B.

(d) Comment on the quantum advantage for this problem.

3. When analyzing period finding in class, we assumed mb = N/r, but if N/r is not an integer,
then actually mb = dN/re or mb = bN/rc. In this problem, you’ll investigate what happens
when N/r is not an integer, and you’ll also see what is involved in the period finding classical
post-processing step. (For more detail on the reduction from factoring to period finding, and
on why the continued fractions approach works, it looks like Quantum Computing, a Gentle
Introduction, provides a pretty gentle explanation. Link at bottom of syllabus at go/cs333.)

(a) For this problem, let’s assume that we get an outcome |f(b∗)〉 on the second register,
where mb∗ = dN/re. Then

Pr(|y〉) =
1

Nmb∗

∣∣∣∣∣
mb∗−1∑
m=0

e−2πimry/N

∣∣∣∣∣
2

. (6)

Plot Pr(|y〉) (note this function is discrete - it should only take values for integer
values of y) for N = 400, r = 7, and m∗b = dN/re using any plotting software you
prefer (e.g. matplotlib for python, mathematica, etc). Comment on where the values of
Pr(|y〉) are largest.

(b) You should find that there are several values of y that are particularly likely. Choose
one of these - call it y∗. (Do not choose y∗ = 0).

To find r from y∗ we need to find the convergents of the continued fraction of y. To
do this, first find the continued fraction of y∗/N = y∗/400. (See Wikipedia on Continued
Fractions). Then the convergents of a continued fraction are the fractions you get when
you stop the algorithm at an intermediate step. Using the example on the wikipedia
page, the first convergent is 3, the second is 3 + 1

4 , the third is 3 + 1
4+ 1

12

, and the fourth

is 3 + 1
4+ 1

12+1
4

. If we write each of these as a proper fraction, we get the following series

of convergents: 3, 13/4, 159/49, 199/65.

4

https://en.wikipedia.org/wiki/Continued_fraction#Calculating_continued_fraction_representations
https://en.wikipedia.org/wiki/Continued_fraction#Calculating_continued_fraction_representations

Once you create the series of convergents of the continued fraction of y∗/N , consider
all those convergents with denominator less than

√
N . Among those, calculate the

difference between each convergent and y∗/N . Take the convergent that has the smallest
absolute value difference. Then the denominator of that convergent will be either r or a
factor of r.

Do this process for y∗ and verify that you get r. (You won’t get a factor of r because
in our case r = 7 is prime!)

[Note - in the case that r is not prime, this process might result in a factor of r.
Then if you repeat this twice, you will get two outcomes that might both be factors of r.
Then r will, with high probability, be the least common multiple of the two factors. You
can find the least common multiple of numbers a and b by taking ab/gcd(a, b), where
gcd(a, b) is the greatest common denominator of a and b, which can be found efficiently
using the Euclidean Algorithm. If you are interested, you can repeat this problem with
an example with an r that is not prime, and go through this process again, including
this final part of the analysis.]

5

https://en.wikipedia.org/wiki/Euclidean_algorithm

